Vol. 8
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2009-08-05
Magnetostatic Field Analysis Regarding the Effects of Dynamic Eccentricity in Switched Reluctance Motor
By
Progress In Electromagnetics Research M, Vol. 8, 163-180, 2009
Abstract
In this paper, a novel view of a switched reluctance motor under dynamic eccentricity fault to provide the precise and reliable electromagnetics model is presented. It describes the performance characteristics and comparison results of the 6/4 switched reluctance motor with dynamic rotor eccentricity utilizing three-dimensional finite element analysis. The results obtained using three-dimensional finite element analysis of the switched reluctance motor includes flux-linkages, terminal inductance per phase, mutual inductances and static torque for various eccentric motor conditions. In this analysis the end effects and axial fringing fields for simulating reliable model are obtained and presented. The paper continues with comparing these results with the ones obtained for the same motor profile but utilizing two-dimensional finite element method. Finally, Fourier analysis is carried out to study the variations of torque harmonics.
Citation
Hossein Torkaman, and Seyed Ebrahim Afjei, "Magnetostatic Field Analysis Regarding the Effects of Dynamic Eccentricity in Switched Reluctance Motor," Progress In Electromagnetics Research M, Vol. 8, 163-180, 2009.
doi:10.2528/PIERM09060205
References

1. Torkaman, H. and E. Afjei, "Comprehensive study of 2-D and 3-D finite element analysis of a switched reluctance motor," Journal of Applied Sciences, Vol. 8, No. 15, 2758-2763, 2008.
doi:10.3923/jas.2008.2758.2763

2. Torkaman, H. and E. Afjei, "Comprehensive magnetic field-based study on effects of static rotor eccentricity in switched reluctance motor parameters utilizing three-dimensional finite element," Electromagnetics, Vol. 29, No. 5, 421-433, Taylor and Francis, 2009.
doi:10.1080/02726340902953354

3. Guldemir, H., "Detection of airgap eccentricity using line current spectrum of induction motors," Electric Power Systems Research, Vol. 64, No. 2, 109-117, Elsevier, 2003.
doi:10.1016/S0378-7796(02)00154-2

4. Sheth, N. K. and K. R. Rajagopal, "Variations in overall developed torque of a switched reluctance motor with air-gap nonuniformity," IEEE Transactions on Magnetics, Vol. 41, No. 10, 3973-3975, Oct. 2005.
doi:10.1109/TMAG.2005.855179

5. Husain, I., A. Radun, and J. Nairus, "Unbalanced force calculation in switched-reluctance machines," IEEE Transaction on Magnetics, Vol. 36, No. 1, 330-338, Jan. 2000.
doi:10.1109/20.822543

6. Faiz, J. and S. Pakdelian, "Finite element analysis of switched reluctance motor under dynamic eccentricity fault," 12th International Power Electronics and Motion Control Conference, 1042-1046, Aug. 2006.
doi:10.1109/EPEPEMC.2006.283299

7. Dorrell, D. G., I. Chindurza, and C. Cossar, "Effects of rotor eccentricity on torque in switched reluctance machines," IEEE Transaction on Magnetics, Vol. 41, No. 10, 3961-3963, Oct. 2005.
doi:10.1109/TMAG.2005.855178

8. Sheth, N. K. and K. R. Rajagopal, "Effects of nonuniform air-gap on the torque characteristics of a switched reluctance motor," IEEE Transactions on Magnetics, Vol. 40, No. 4, 2032-2034, Jul. 2004.
doi:10.1109/TMAG.2004.832173

9. Geldhof, K. R., T. J. Vyncke, F. M. L. L. De Belie, L. Vandevelde, J. A. A. Melkebeek, and R. K. Boel, "Embedded runge-kutta methods for the integration of a current control loop in an SRM dynamic finite element model," IET Science. Meas. Technology., 17-20, 2007.
doi:10.1049/iet-smt:20060026

10. Parreira, B., S. Rafael, A. J. Pires, and P. J. Costa Branco, "Obtaining the magnetic characteristics of an 8/6 switched reluctance machine: From FEM analysis to the experimental tests," IEEE Transactions on Industrial Electronics, Vol. 52, No. 6, 1635-1643, Dec. 2005.
doi:10.1109/TIE.2005.858709

11. Kamper, M. J., S. W. Rasmeni, and R.-J. Wang, "Finite-element Time-step simulation of the switched reluctance machine drive under single pulse mode operation," IEEE Transaction on Magnetics, Vol. 43, No. 7, 3202-3208, Jul. 2007.
doi:10.1109/TMAG.2007.892792

12. Sixdenier, F., L. Morel, and J. P. Masson, "Introducing dynamic behaviour of magnetic materials into a model of a switched reluctance motor drive," IEEE Transaction on Magnetics, Vol. 42, No. 3, 398-404, Mar. 2006.
doi:10.1109/TMAG.2005.862757

13. Faiz, J. and B. M. Ebrahimi, "Mixed fault diagnosis in three-phase squirrel-cage induction motor using analysis of air-gap magnetic field," Progress In Electromagnetics Research, Vol. 64, 239-255, 2006.
doi:10.2528/PIER06080201

14. Faiz, J., B. M. Ebrahimi, and M. B. B. Sharifian, "Time stepping finite element analysis of broken bars fault in a three-phase squirrel-cage induction motor," Progress In Electromagnetics Research, Vol. 68, 53-70, 2007.
doi:10.2528/PIER06080903

15. Faiz, J., B. M. Ebrahimi, M. Valavi, and H. A. Toliyat, "Mixed eccentricity fault diagnosis in salient-pole synchronous generator using modified winding function method," Progress In Electromagnetics ResearchB, Vol. 11, 155-172, 2009.
doi:10.2528/PIERB08110903

16., Magnet CAD package: User Manual, Infolytica Corporation Ltd., Montreal, Canada, Jan. 2007.

17. Afjei, E., A. Sydatan, and H. Torkaman, "A new two phase bidirectional hybrid switched reluctance motor/field-assisted generator," Journal of Applied Science, Vol. 9, No. 4, 765-770, 2009.
doi:10.3923/jas.2009.765.770

18. Nandi, S., H. A. Toliyat, and X.-D. Li, "Condition monitoring and fault diagnosis of electrical motors --- A review," IEEE Transactions on Energy Conversion, Vol. 20, No. 4, 719-729, Dec. 2005.
doi:10.1109/TEC.2005.847955

19. Li, J., D. Choi, and Y. Cho, "Analysis of rotor eccentricity in switched reluctance motor with parallel winding using FEM," IEEE Transactions on Magnetics, Vol. 45, No. 6, 2851-2854, 2009.
doi:10.1109/TMAG.2009.2018694

20. Dorrell, D. G. and C. Cossar, "A vibration-based condition monitoring system for switched reluctance machine rotor eccentricity detection," IEEE Transactions on Magnetics, Vol. 44, No. 9, 2204-2214, 2008.
doi:10.1109/TMAG.2008.2000498