Vol. 8

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2009-07-09

Complete Tunneling of Light through MU-Negative Media

By Wei Tan, Zhiguo Wang, and Hong Chen
Progress In Electromagnetics Research M, Vol. 8, 27-37, 2009
doi:10.2528/PIERM09060201

Abstract

We demonstrate complete tunneling of light through large-scale mu-negative media, which has negative permeability but positive permittivity, by constructing a quasi-one-dimensional structure with side branches. For the structure with a single side branch, there always exists a transmission peak which can be easily tuned by varying the parameters of the side branch. For the structure with periodic array of side branches, the transmission peak is enlarged to a band, which exhibits left-handedness, and can be tuned by changing the distance between two neighboring side branches and the length of the side branch.

Citation


Wei Tan, Zhiguo Wang, and Hong Chen, "Complete Tunneling of Light through MU-Negative Media," Progress In Electromagnetics Research M, Vol. 8, 27-37, 2009.
doi:10.2528/PIERM09060201
http://jpier.org/PIERM/pier.php?paper=09060201

References


    1. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 11, 2075-2084, 1999.
    doi:10.1109/22.798002

    2. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Physical Review Letter, Vol. 84, No. 18, 4184-4187, 2000.
    doi:10.1103/PhysRevLett.84.4184

    3. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, 2001.
    doi:10.1126/science.1058847

    4. Pendry, J. B., "Negative refraction makes a perfect lens," Physical Review Letter, Vol. 85, No. 18, 3966-3969, 2000.
    doi:10.1103/PhysRevLett.85.3966

    5. Engheta, N., "An idea for thin subwavelength cavity resonators using metamaterials with negative permittivity and permeability," IEEE Antennas Wireless Propag. Lett., Vol. 1, 10-13, 2002.
    doi:10.1109/LAWP.2002.802576

    6. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780-1782, 2006.
    doi:10.1126/science.1125907

    7. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, 2006.
    doi:10.1126/science.1133628

    8. Lai, Y., H. Chen, Z.-Q. Zhang, and C. T. Chan, "Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell," Physical Review Letter, Vol. 102, No. 093901, 2009.

    9. Aù, A. and N. Engheta, "Pairing an epsilon-negative slab with a mu-negative slab: Resonance, tunneling and transparency," IEEE Trans. Antennas Propag., Vol. 51, No. 10, 2558-2571, 2003.
    doi:10.1109/TAP.2003.817553

    10. Jiang, H., H. Chen, H. Li, Y. Zhang, J. Zi, and S. Zhu, "Properties of one-dimensional photonic crystals containing single-negative materials," Physical Review E, Vol. 69, No. 066607, 2004.

    11. Guan, G., H. Jiang, H. Li, Y. Zhang, H. Chen, S. Zhu, and , "Tunneling modes of photonic heterostructures consisting of single-negative materials," Appl. Phys. Lett., Vol. 88, 211112, 2006.
    doi:10.1063/1.2207218

    12. Fang, Y. and S. He, "Transparent structure consisting of metamaterials layers and matching layers," Physical Review A, Vol. 78, No. 023813, 2008.

    13. Zhou, L., W. Wen, C. T. Chan, and P. Sheng, "Electromagneticwave tunneling through negative-permittivity media with high magnetic fields," Physical Review Letter, Vol. 94, No. 243905, 2005.

    14. Kim, K.-Y. and B. Lee, "Complete tunneling of light through impedance-mismatched barrier layers," Physical Review A, Vol. 77, No. 023822, 2008.

    15. Vasseur, J. O., P. A. Deymier, L. Dobrzynski, B. Djafari-Rouhani, and A. Akjouj, "Absolute band gaps and electromagnetic transmission in quasi-one-dimensional comb structures," Physical Review B, Vol. 55, No. 16, 10434-10442, 1997.
    doi:10.1103/PhysRevB.55.10434

    16. Dobrzynski, L., A. Akjouj, B. Djafari-Rouhani, J. O. Vasseur, and J. Zemmouri, "Giant gaps in photonic band structures," Physical Review B, Vol. 57, No. 16, R9388-R9391, 1998.
    doi:10.1103/PhysRevB.57.R9388

    17. Cocoletzi, G. H., L. Dobrzynski, B. Djafari-Rouhani, H. AIWahsh, and D. Bria, "Electromagnetic wave propagation in quasi-one-dimensional comb-like structures made up of dissipative," J. Phys.: Condens. Matter, Vol. 18, 3683-3690, 2006.
    doi:10.1088/0953-8984/18/15/014

    18. Weng, Y., Z. G. Wang, and H. Chen, "Band structure of comblike photonic crystals containing meta-materials," Opt. Commun., Vol. 277, 80-83, 2007.
    doi:10.1016/j.optcom.2007.04.049

    19. Srivastava, S. K. and S. P. Ojha, "Photonic band gaps in one-dimensional metallic star waveguide structures," Progress In Electromagnetics Research, Vol. 84, 349-362, 2008.
    doi:10.2528/PIER08080501

    20. Vasseur, J. O., A. Akjouj, L. Dobrzynski, B. Djafari-Rouhani, and E. H. El Boudouti, "Photon, electon, magnon, phonon and plasmon mono-mode circuits," Surf. Sci. Rep., Vol. 54, 1-156, 2004.
    doi:10.1016/j.surfrep.2004.04.001