Vol. 7
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2009-06-18
A New Integral Equation Formulation for Scattering of Electromagnetic Waves by 2D Conducting Structures, Using Cylindrical Harmonics
By
Progress In Electromagnetics Research M, Vol. 7, 165-177, 2009
Abstract
Using cylindrical harmonics and Fourier series, a new integral equation formulation is derived for perfectly conducting 2D scattering problems. This new integral equation is based on the fact that, all of the electric and magnetic field components are zero inside a perfect electric conductor. The incident and scattered fields are expressed in the cylindrical coordinate system with respect to a common origin inside the scatterer, using the addition theorem for Bessel and Hankel functions. The resulting electric or magnetic field is set equal to zero for all the points inside the largest cylinder that is contained in and tangent to the surface of the scatterer. As a result the field point variables are eliminated from the integral equation and only the source points are present in this formulation. Therefore the size of the problem is reduced considerably. A dramatic improvement in the computation speed is seen compared to the classical method of moments. TE and TM scattering problems are considered and the integral equation formulation is derived and solved for both cases.
Citation
Nima Chamanara, "A New Integral Equation Formulation for Scattering of Electromagnetic Waves by 2D Conducting Structures, Using Cylindrical Harmonics," Progress In Electromagnetics Research M, Vol. 7, 165-177, 2009.
doi:10.2528/PIERM09042106
References

1. Saad, Y. and M. Schultz, "Gmres: A generalized minimal residual algorithm for solving nonsymmetric linear systems," SIAM J. Sci. Statist. Comput., Vol. 7, 856-869, 1986.
doi:10.1137/0907058

2. Concus, P., G. Golub, and D. O'Leary, "Generalized conjugate gradient method for the numerical solution of elliptic partial di®erential equations," Sparse Matrix Computations, 309-332, Academic, New York, 1976.

3. Michielssen, E. and A. Boag, "Multilevel evaluation of electromagnetic ¯elds for the rapid solution of scattering problems," Microwave Opt. Technol. Lett., Vol. 7, No. 17, 790-795, Dec. 5 1994.
doi:10.1002/mop.4650071707

4. Coifman, R., V. Rokhlin, and S. Wandzura, "The fast multipole method for the wave equation: A pedestrian prescription," IEEE Antennas Propagat. Mag., Vol. 35, 7-12, Jun. 1993.
doi:10.1109/74.250128

5. Song, J. M. and W. C. Chew, "Fast multipole method solution using parametric geometry," Microwave Opt. Technol. Lett., Vol. 7, No. 16, 760-765, Nov. 1994.
doi:10.1002/mop.4650071612