Vol. 6
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2009-04-09
Theoretical Modeling of a Metal-Clad Planar Waveguide Based Biosensors for the Detection of Pseudomonas-Like Bacteria
By
Progress In Electromagnetics Research M, Vol. 6, 167-184, 2009
Abstract
In this paper, a metal-clad planar optical waveguide biosensor with five layer structure is studied theoretically for the detection of Pseudomonas and Pseudomonas-like bacteria. Using a very simple boundary matching technique, we derive the mode equation and other necessary formulae for the proposed biosensor and analyse its performance under different conditions related to its constituents. The numerical results presented in this paper leads to a significant optimization of the important design parameters to sense micro-scale biological objects. Also, we compare our computed results with the results given for a biosensor with four layer structure. In addition, we discuss the importance and need of the inclusion of the thickness of an affinity layer as fifth layer in the four layer structure of the metal clad planar waveguide.
Citation
Vivek Singh, and Dinesh Kumar, "Theoretical Modeling of a Metal-Clad Planar Waveguide Based Biosensors for the Detection of Pseudomonas-Like Bacteria," Progress In Electromagnetics Research M, Vol. 6, 167-184, 2009.
doi:10.2528/PIERM09021701
References

1. Tiefenthaler, K. and W. Lukosz, "Integrated optical switches and glass sensor," Opt. Letter, Vol. 10, 137-139, 1984.
doi:10.1364/OL.9.000137

2. Tiefenthaler, K. and W. Lukosz, "Sensitivity of grating couplers as integrated optical chemical sensors," Rev. Mod. Phys., Vol. 49, 361-420, 1977.
doi:10.1103/RevModPhys.49.361

3. Kunz, R. E., "Miniature integrated optical modules for chemical and biological sensing," Sens. Actuators B, Vol. 38, 13-28, 1997.
doi:10.1016/S0925-4005(97)80167-0

4. Lukosz, W., "Integrated optical chemical and direct biochemical sensors," Sens. Actuators B, Vol. 29, 3750, 1995.
doi:10.1016/0925-4005(95)01661-9

5. Horvath, R., G. Fricsovszky, and E. Pap, "Application of the optical waveguide lightmode spectroscopy to monitor lipid bilayer phase transition," Biosensors Bioelectron., Vol. 18, 415-428, 2003.
doi:10.1016/S0956-5663(02)00154-9

6. Hervath, R., et al. "Optical waveguide sensor for on-line monitoring of bacteria," Opt. Letter, Vol. 28, 1233-1235, 2003.
doi:10.1364/OL.28.001233

7. Marazuela, M. D., et al. "Fiber-optic biosensors --- An overview," Anal. Bioanal Chem., Vol. 372, 664-682, 2002.
doi:10.1007/s00216-002-1235-9

8. Ivnitski, D., et al. "Review: Biosensors for detection of pathogenic bacteria," Biosens. Bioelectron, Vol. 14, 599-624, 1999.
doi:10.1016/S0956-5663(99)00039-1

9. Udd, E., "An overview of fiber optic sensors," Rev. Sci. Instrum., Vol. 66, 4015-4030, 1995.
doi:10.1063/1.1145411

10. Kuswandi, B., "Simple optical fiber biosensor based on immobilized enzyme for monitoring of trace having metal ions," Anal. Bioanal. Chem., Vol. 376, 1104-1110, 2003.
doi:10.1007/s00216-003-2001-3

11. Horvath, R., et al. "Measurement of guided light mode intensity: An alternative waveguide sensing principle," Appl. Phys. Lett., Vol. 84, 4044-4046, 2004.
doi:10.1063/1.1751610

12. Homola, J., S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: Review," Sensors and Actuators B, Vol. 54, 3-15, 1999.
doi:10.1016/S0925-4005(98)00321-9

13. Sharma, A. K. and B. D. Gupta, "Theoretical model of a fiber optic remote sensor based on surface plasmon resonance for temperature detection," Optical Fiber Technol., Vol. 12, 87-100, 2006.
doi:10.1016/j.yofte.2005.07.001

14. Horvath, R., H. C. Pederson, and N. Skivensen, "Monitoring of living cell attachment and spreading using reverse symmetry wave-guide sensing," Appl. Phys. Letters, Vol. 86, 071101-071103, 2005.
doi:10.1063/1.1862756

15. Skivensen, N., R. Horvath, and H. C. Pederson, "Optimization of metal-clad waveguide sensor," Sensor and Actuators B, Vol. 106, 668-676, 2005.
doi:10.1016/j.snb.2004.09.014

16. Skivensen, N., R. Horvath, S. Thinggaaed, N. B. Larsen, and H. C. Pedersen, "Deep-probe metal-clad waveguide biosensors," Biosensor and Bioelectronics, Vol. 22, 1282-1288, 2007.
doi:10.1016/j.bios.2006.05.025

17. Ksendzov, A. and Y. Lin, "Integrated Optics ring-resonator sensor for protein detection," Opt. Lett., Vol. 30, 3344-3346, 2005.
doi:10.1364/OL.30.003344

18. Yalcin, A., K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, et al. "Optical sensing of biomolecules using micro -ring resonators," IEEE J. Sel. Topics Quantum Electron, Vol. 12, 148-154, 2006.
doi:10.1109/JSTQE.2005.863003

19. Blanco, F. J., M. Agirregabiria, J. Berganzo, K. Mayora, J. Elizalde, et al. "Microfluidic optical Integrated CMOS compatible devices for level free biochemical sensing," J. Micromech. Microeng., Vol. 16, 1006-1016, 2006.
doi:10.1088/0960-1317/16/5/018

20. Densmore, A., D. X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, et al. "A silicon-on-insulator photonic wire based evanescent field sensor," IEEE Photonics Technology Letters, Vol. 18, No. 23, 2520-2522, 2006.
doi:10.1109/LPT.2006.887374

21. Veldhuis, G. J., O. Parriaux, H. J. W. Hockstra, and P. V. Lambeck, "Sensitivity enhancement in evanescent optical waveguide sensors ," J. of Lightw. Technol., Vol. 18, 677-682, 2000.
doi:10.1109/50.842082

22. Jourab, M., et al. "The development of a metal clad waveguide sensor for the detection of particles," Sensors and Actuators B, Vol. 90, 296-307, 2003.

23. Jourab, M., et al. "An integrated metal clad leaky waveguide sensor for detection of bacteria," Anal. Chemistry, Vol. 77, 232-242, 2005.

24. Taya, S. A., M. M. Shabat, and H. M. Khalil, "Enhancement of sensitivity in optical waveguide sensors using left-handed materials,", doi:10.1016/j.ijleo.2007.12.001, 2007.
doi:10.1016/j.ijleo.2007.12.001

25. Huang, S. Y. and S. Y. Wang, "Light propagation characteristics in various dielectric waveguide," Chinese Journal of Physics, Vol. 24, No. 2, 129-137, 1986.

26. Fletchert, M. and G. I. Loeb, "Influence of substratum characteristics on the attachment of a marine pseudomonad to solid surfaces ," Applied and Environmental Microbiology, Vol. 37, No. 1, 67-72, 1979.

27. Morell, A. and Y. H. Ahn, "Optical efficiency factors of free-living marine bacteria: Influence of bacterioplankton upon the optical properties and particulate organic carbon in oceanic waters," Journal of Marine Research, Vol. 48, 145-175, 1990.
doi:10.1357/002224090784984632

28. Lavers, C. R., K. Itoh, S. C. Wu, M. Murabayashi, I. Mauchline, G. Stewart, and T. Stout, "Planar optical waveguides for sensing applications," Sensors and Actuators B, Vol. 69, 85-95, 2000.
doi:10.1016/S0925-4005(00)00412-3

29. Campbell, A. N., E. M. Kartzmark, and W. E. Falconer, "The system: Nicotine-methylethyl ketone-water," Can. J. Chem., Vol. 36, 1475-1486, 1958.
doi:10.1139/v58-218

30. Debenham, M. and G. D. Dew, "The refractive index of toluene in the visible spectral region," J. Phys. E: Sci. Instrum., Vol. 14, 544-545, 1981.
doi:10.1088/0022-3735/14/5/004

31. Rostami, A. and H. Motavali, "Asymptotic iteration method: A powerful approach for analysis of inhomogeneous dielectric slab waveguides," Progress In Electromagnetics Research B, Vol. 4, 171-182, 2008.
doi:10.2528/PIERB08011701

32. Wang, Z. J. and J. F. Dong, "Analysis of guided modes in asymmetric left-handed slab waveguides," Progress In Electromagnetics Research, Vol. 62, 203-215, 2006.
doi:10.2528/PIER06021802

33. Liu, S.-H., C.-H. Liang, W. Ding, L. Chen, and W.-T. Pan, "Electromagnetic wave propagation through a slab waveguide of uniaxially anisotropic dispersive metamaterial," Progress In Electromagnetics Research, Vol. 76, 467-475, 2007.
doi:10.2528/PIER07071905