Vol. 3

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2008-07-01

Velocity Shear Ion-Cyclotron Instability with Perpendicular AC Electric Field

By Rama Pandey, Umesh Chandra Srivastava, R. Pandey, B. Prasad, and Hariom
Progress In Electromagnetics Research M, Vol. 3, 177-191, 2008
doi:10.2528/PIERM08053001

Abstract

Current driven electrostatic ion cyclotron instability has been studied for parallel flowv elocity shear with perpendicular a.c. electric field to the ambient magnetic field for bi-Maxwellian density drift distribution function. The method adopted for expression for dispersion relation and growth rate is kinetic approach and method of characteristic solution for ionospheric plasma. The effect of a.c. frequency, density gradient, and velocity shear scale length has been discussed.

Citation


Rama Pandey, Umesh Chandra Srivastava, R. Pandey, B. Prasad, and Hariom, "Velocity Shear Ion-Cyclotron Instability with Perpendicular AC Electric Field," Progress In Electromagnetics Research M, Vol. 3, 177-191, 2008.
doi:10.2528/PIERM08053001
http://jpier.org/PIERM/pier.php?paper=08053001

References


    1. Drummond, W. E. and M. N. Rosenbluth, "Anomalas diffusion a rising from microinstablities in a plasma," Phys. Fluids, Vol. 5, 1507, 1962.
    doi:10.1063/1.1706559

    2. Ganguli, G. and P. Bakshi, "Phys. Fluids,", Vol. 25, 1830.
    doi:10.1063/1.863661

    3. Ganguli, G., P. Bakshi, and P. Palmadesso, "Phys. Fluids,", Vol. 26, Phys. Fl, 1983.

    4. Ganguli, G., P. Bakshi, and P. Palmadesso, "Phys. Fluids,", Vol. 26, 1808, 1983.
    doi:10.1063/1.864356

    5. Ganguli, G. and P. Bakshi. P. Palmadeso, "Phys. Fluids,", Vol. 27, 2039, 1984.
    doi:10.1063/1.864860

    6. Chandrashekar, S. C., "Hydrodynamic and Hydro-magnetic Stability," Ch. XI, Drover, NewY ork, 1981.

    7. Mikhailovskii, A. B., "Theory of Plasma Instabilities," Ch. 7, Constants Bereau, NewYork, 1974, Vol. 1.

    8. Maslowe, S. A., "Hydrodynamic Instabilities and Transition to Turbulance," Ch. 7, Spinger Verlag, Berlin, 1985.

    9. Waelbroeck, E. L. and F. L. Chen, "Phys. Fluids,", Vol. B3, 601, 1991.

    10. Bhattacharjee, R., R. Iacono, J. L. Milovich, and C. Paranicas, "Phys. Fluids,", Vol. B1, 2207.

    11. Biglari, H., P. H. Diamond, and P. W. Terry, Phys. Fluids, Vol. B2, 1, 1990.

    13. Groebner, R. J., K. H. Burrell, and R. P. Seray Darian, "Phys. Rev. Lett.,", Vol. 64, 3015.

    14. Pandey, R. S., K. D. Misra, and A. K. Tripathi, "Generation of ion-cyclotron like wave by parallel flow velocity shear in the presence of inhomogeneous D.C. electric field in an anisotropic magnetoplasma," Indian J. Radio Space Phys., Vol. 32, 75, 2003.

    15. Mozer, F. S., C. W. Carlson, M. K. Hudson, R. B. Torbert, B. Parady, J. Yattean, and M. C. Kelly, "Phys. Rev. Lett.,", Vol. 38, 292, 1977.

    16. Temerin, M., C. Cattell, R. Laysak, M. Hudson, R. B. Torbert, F. S. Mozer, R. D. Sharp, and P. M. Kintner, "J. Geophys. Res.,", Vol. 86, 11278, 1981.

    17. Ganguli, G., Y. C. Lee, and J. Palmadesso, "Kinetic theory for electrostatic waves due to transverse velocity shear," Phys. Fluids, Vol. 31, 823, 1988.
    doi:10.1063/1.866818

    18. Ganguli, G., Y. C. Lee, and P. J. Palmadesso, "Electrostatic ion-cyclotron instability caused by a non-unifrom electric field perpendicular to external magnetic field ," Phys. Fluids, Vol. 28, 761, 1985.
    doi:10.1063/1.865096

    19. Pandey, R. S., K. D. Misra, and A. K. Tripathi, "Kelvin-Helmholtz instability in an anisotropic magnetoplasma in the presence of inhomogeneous D.C. electric field parallel flowv elocity shear," Indian J. Radio Space Phys., Vol. 30, No. 113, 2001.

    20. Pandey, R. S., R. P. Pandey, A. K. Srivastava, S. M. Karim, and Hariom, "The electromagnetic ion-cyclotron instability in the presence of a.c. electric field for Lorentzian kappa," Progress In Progress In M, Vol. 1, 207, 2008.

    21. Huba, J. D., "The Kelvin-Helmholtz instability in inhomogeneous plasma ," J. Geophys. Res., Vol. 86, 3653, 1981.
    doi:10.1029/JA086iA05p03653