Vol. 2

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2008-06-04

FDTD Modeling of a Resistively Loaded Monopole for Narrow Borehole Ground Penetrating Radar

By Florence Sagnard and C. Fauchard
Progress In Electromagnetics Research M, Vol. 2, 201-211, 2008
doi:10.2528/PIERM08041102

Abstract

The geometryof a broadband (0.7-2 GHz) monopole antenna intended to be inserted in a narrow borehole for ground penetrating crosshole application is proposed. The monopole antenna is supposed to be designed on a printed circuit board (PCB) using the low-cost microstrip technology. Based on the FDTD approach, the modeling of the antenna surrounded byits environment has been made, and the influence of several parameters on the radiated waveforms has been studied in details. The modeling of a transmission link has also been considered. Such a studyaims at the realization of a narrow broadband antenna.

Citation


Florence Sagnard and C. Fauchard, "FDTD Modeling of a Resistively Loaded Monopole for Narrow Borehole Ground Penetrating Radar," Progress In Electromagnetics Research M, Vol. 2, 201-211, 2008.
doi:10.2528/PIERM08041102
http://jpier.org/PIERM/pier.php?paper=08041102

References


    1. Daniels, D. J., Ground Penetrating Radar, IEE Series 15, 2004.

    2. Ozdemir, C., S. Demirci, and E. Yigit, "Practical algorithms to focus B-scan GPR images: Theoryand application to real data," Progress In Electromagnetics Research B, Vol. 6, 109-122, 2008.
    doi:10.2528/PIERB08031207

    3. Giroux, B., E. Gloaguen, and M. Chouteau, "bh tomo — A Matlab borehole georadar 2D tomographypac kage," Computers and Geosciences, Vol. 33, 126-137, 2007.
    doi:10.1016/j.cageo.2006.05.014

    4. Rucker, D. F. and T. P. A. Ferre, "Near-surface water content estimation with borehole ground penetrating radar using critically refracted waves," Vadose Zone Journal, Vol. 2, 247-252, 2003.
    doi:10.2113/2.2.247

    5. Rucker, D. F. and T. P. A. Ferre, "Automated water content reconstruction of zero-offset borehole ground penetrating radar data using simulated annealing," J. of Hydrology, Vol. 309, 1-16, 2005.
    doi:10.1016/j.jhydrol.2004.11.008

    6. Rucker, D. F. and T. P. A. Ferre, "BGPR Reconstruct: A MATLAB ray-tracing program for nonlinear inversion of first arrival travel time data from zero-offset borehole radar," Computers and Geosciences, Vol. 30, 767-776, 2004.
    doi:10.1016/j.cageo.2004.05.009

    7. AFNOR NF P 94-062, "Soils: Investigation and testing-Measurement of densityon site-Gamma-gamma ray log,", 1997.

    8. Ren, W., J. Y. Deng, and K. S. Chen, "Compact PCB monopole antenna for UWB applications," J. of Electromagn. Waves and Appl., Vol. 21, No. 10, 1411-1420, 2007.
    doi:10.1163/156939307783239401

    9. Yin, X.-C., C.-L. Ruan, C.-Y. Ding, and J.-H. Chu, "A planar U type monopole antenna for UWB applications," Progress In Electromagnetics Research Letters, Vol. 2, 1-10, 2008.
    doi:10.2528/PIERL07121405

    10. Naghshvarian-Jahromi, M., "Compact UWB bandnotch antenna with transmission-line-FED," Progress In Electromagnetics Research, Vol. 3, 283-293, 2008.

    11. Kuo, L.-C., H.-R. Chuang, Y.-C. Kan, T.-C. Huang, and C.-H. Ko, "A studyof planar printed dipole antennas for wireless communication applications," J. of Electromagn. Waves and Appl., Vol. 21, No. 5, 637-652, 2007.
    doi:10.1163/156939307780667355

    12. Green, H. E., "The radiation pattern of a conical horn," J. of Electromagn. Waves and Appl., Vol. 20, No. 9, 1149-1160, 2006.
    doi:10.1163/156939306777442999

    13. Ghosh, S., A. Roy, and A. Chakrabarty, "Estimation of antenna factor of microstrip patch antenna as EMI sensor," Progress In Electromagnetics Research Letters, Vol. 3, 113-122, 2008.
    doi:10.2528/PIERL08021403

    14. Uduwawala, D., "Modeling and investigation of planar parabolic dipoles for GPR applications: A comparison with bow-tie using FDTD," J. of Electromagn. Waves and Appl., Vol. 20, No. 2, 227-236, 2006.
    doi:10.1163/156939306775777224

    15. Sato, M. and R. Thierbach, "Analysis of a borehole radar in cross-hole mode," IEEE Trans. Geosc. Remote Sens., Vol. 29, No. 6, 899-904, Nov. 1991.
    doi:10.1109/36.101368

    16. Irving, J. D. and R. J. Knight, "Numerical simulation of antenna transmission and reception for crosshole ground-penetrating radar," Geophysics, Vol. 71, No. 2, K37-K45, March-April 2006.
    doi:10.1190/1.2187768

    17. Wu, T. T. and R. W. P. King, "The cylindrical antenna with nonreflecting resistive loading," IEEE Trans. Antennas Propagat., Vol. 13, 369-373, 1965.
    doi:10.1109/TAP.1965.1138429

    18. Gouws, M., "Modelling of a monostatic borehole radar antenna,", Ph.D. Thesis, Universityof Stellenbosch, April 2006.

    19. Kim, K. and W. R. Scott Jr., "Design and realization of a discretelyloaded resistive vee dipole for ground-penetrating radars ," Radio Science, Vol. 39, 1-9, 2004.

    20. Kim, K. and W. R. Scott Jr., "Design of a resistivelyloaded vee dipole for ultrawide-band ground-penetrating radar applications," IEEE Trans. Antennas and Propagat., Vol. 53, No. 8, 2525-2532, Aug. 2005.
    doi:10.1109/TAP.2005.852320

    21. Gupta, K. C., Microstrip Lines and Slotlines, 2 Ed., Artech House, 1996.