
Progress In Electromagnetics Research Letters, Vol. 24, 59–68, 2011

ACHIEVABLE TRANSVERSE CYLINDRICAL ELEC-
TROMAGNETIC MODE

R. Chen 1, * and X. Li 2

1Shenzhen Institute of Physics and Mathematics, Shenzhen 518028,
China
2South China Normal University, Guangzhou 510631, China

Abstract—The system of Maxwell equations with an initial condition
in a vacuum is solved in a cylindrical coordinate system. It derives the
cylindrical transverse electromagnetic wave mode in which the electric
field and magnetic field are not in phase. Such electromagnetic wave
can generate and exist in actual application, and there is no violation
of the law of conservation of energy during the electromagnetic field
interchanges.

1. INTRODUCTION

The general solutions of Maxwell equations [1, 2] contain unnumbered
forms of wave modes in both magnetic field and electric field, but only
the special solutions that obey its initial or boundary conditions can
describe the achievable electromagnetic wave.

However, classical theories discuss time-harmonic transverse
electromagnetic waves without verifying whether initial conditions
are achieved, but usually predefine the forms of the solutions to the
Maxwell equations [3–6] by adopting the plural expressions, E (r, t)
= E (r) eiωt and B (r, t) = B (r) eiωt. Consequently, the electric
field and magnetic field of the time-harmonic electromagnetic wave
obtained above are in-phase everywhere. These electromagnetic modes
may form an initial-moment crisis and violate the conservation of
energy during the electric and magnetic fields interchanges to each
other. We note that the acknowledged results achieved by some
previous authors [7] are actually derived from the above predefined
plural expressions of the solutions of the Maxwell equations. In
classical theory of electromagnetic wave, the substantial existence of
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electromagnetic waves is given little attention to [8], because both the
propagation and reception of electromagnetic waves are independent
of their respective phase differences actually. There were no immediate
details about whether one can design and run an experiment to test
if it exists for the electromagnetic wave in which the electronic field
and magnetic field in phase. However, a physical theory must always
guarantee the consistency of its mathematical deductions. This is
just why we restudy the problem of initial value for the Maxwell
equations. According to the theory of differential equations, solutions
of Maxwell equations should not violate natural initial and boundary
conditions [9, 10]. Even if an excited source and the consequent
radiation of the electromagnetic waves change according to pure
oscillations by the same frequency, the generated electric fields and
magnetic fields cannot be in same phase with each other, otherwise
the energy conservation law would be violated.

We solved the problem of initial value for the plane transverse
electromagnetic mode [11]. It shows that the classical plane
electromagnetic wave may be unable to produce practically, but
this conclusion does not have an effect on the general application
of electromagnetic waves [12–16]. Unlike the classical plane
electromagnetic wave modes, if the time harmonic wave propagates
along the positive direction of x-axis, the solutions of the Maxwell
equations that accord with an initial value condition in a vacuum would
be the following forms [11]
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the wave modes obtained above meet with explicit physical meanings.
Here we follow the work that derives the Equations (1) and (2)

to discuss the problem of initial value for the cylindrical transverse
electromagnetic mode. We obtain the solutions of Maxwell equations
with a sort of initial condition in a cylindrical coordinate system. Its
electric field and magnetic field are of axial symmetry, with electric
field vectors pointing to the radical direction of the coaxial cylinder
and magnetic field vectors to the tangential direction. It is similar to
the conclusion upon the plane transverse electromagnetic mode, which
is practically able to produce and exist. That is, the magnetic field and
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electric field of the cylindrical transverse electromagnetic wave are in
different phase, and their amplitude ratio depends on the coordinate
of space as well.

2. INITIAL CONDITIONS OF TIME-HARMONIC
CYLINDRICAL TRANSVERSE WAVES

In solving simultaneous differential equations, definite conditions,
including initial conditions and boundary conditions, are required to be
determined [17]. If the space is infinite, then we only need to consider
the initial condition. In fact, since the initial moment can be selected
at random, the initial condition of the Maxwell equations does exist
in any situation. The coaxial transmission of electromagnetic waves
in hollow conductors and core wires is presented in Figure 1. The
radius of the wire is R1, and that of the hollow conductor is R2. In
a vacuum, if the wire and the hollow conductor are having the same
amount of positive and negative charge (the electric quantity per unit
length along the axes on surface is λm), then the electrostatic field
inside the conductor can be written as

E =
λm

2πε0r
er (3)

where R1 ≤ r ≤ R2. Among which er is radical unit vector, and r is
the distance from a certain point in the coaxial transmission line to
the axis.

When the left side of the conductor is connected to a periodically
changing power supply, the distribution of charges thus varies and
propagates towards right, which forms electric field waves transmitting
along the positive direction of z, vertical to the direction of the electric
field. If we have the apart of the hollow conductor with the wire
very close, and the electric field steadily distributed, then, based on
the distribution formula of electrostatic field (3), the formula of the

Figure 1. Cylindrical transverse electromagnetic wave inside the
coaxial transmission line.
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electric field wave in a vacuum can also be determined.

E = er
λm

2πε0r
f (z, t)

E (t = 0) = 0

E (z = 0) = er
λm

2πε0r
f (t)

B (t = 0) = 0

(4)

where f (z, t) may be simple harmonic, which is determined by
the charge distribution on the surface of conductor. If the
excitation sources is an alternating currents of high frequency, which
the oscillation current changes according sine function, then the
corresponding wave mode with the initial and boundary conditions
in a vacuum will be expressed by plural expressions

E = er
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eiω(t− z

c )
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E (z = 0) = er
λm

2πε0r
eiωt

B (t = 0) = 0

(5)

At the initial moment, the electric field within the transmission wire is
zero, and hence the magnetic field is zero as well, which build up the
initial conditions.

3. GENERAL SOLUTIONS OF MAXWELL EQUATIONS
IN CYLINDRICAL COORDINATE SYSTEM

Periodically changing electric fields generate periodically changing
magnetic fields, and the correspondingly generated electromagnetic
wave propagates at the speed of light in vacuum. The expressions
of the electric field and the magnetic field satisfy Maxwell equations

∇×E = −∂B
∂t

∇×B =
1
c2

∂E
∂t

∇ ·E = 0
∇ ·B = 0

(6)
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Since the problem is axially symmetric, in cylindrical coordinate
system [18], the simultaneous Equation (6) can be written as [19]
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As to electric mode (4), since Er = Er (r, z, t) , Eθ = 0 and Ez = 0,
simultaneous Equation (7) can be rewritten as
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According to the third equation above, the electric field satisfies the
equation rEr = g (z, t), so that

Er =
g (z, t)

r
(9)

The result is in accordance with that deduced by (4), which means
the third equation of (8) is valid. Because that both sides of the
equation are correspondingly equal to each other, so that the other
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three equations can be transformed into
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According to the first three equations above, we get

Br = Br (r, θ, z)
Bz = Bz (r, θ, z)

Bθ = −
∫

∂Er

∂z
dt + a (r, θ, z)

(11)

This result will certainly satisfy the last two equations of (10).
Consequently, the magnetic field can be written as

B = erBr (r, θ, z) + eθ

[
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]
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By using the initial condition B (t = 0) = 0, we get

Br (r, θ, z) = 0; Bz (r, θ, z) = 0 (13)

Therefore,
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On the other hand, by the use of (13), and the integration of the first
equation on the second line of (10), we get
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Based on (4) and (14), the general equation of cylindrical
electromagnetic mode can be written as
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or
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(16) and (17) are equivalent to each other. In a vacuum, they are both
general solutions of the Maxwell equations, where the magnetic field
provoked by a radical electric field.

4. TIME-HARMONIC CYLINDRICAL TRANSVERSE
ELECTROMAGNETIC MODE

On the basis of (16) or (17), the expression of magnetic field can be
acquired by knowing the expression of electric field. By inserting (5)
into (16), we get
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According to the first equation, we get
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By inserting (19) into the second equation in (18), and then integrating
it, we get
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Using the initial conditions of (18), the undetermined function can be
confirmed
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After substituting the function into (20), we further obtain
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Therefore, (18) can be transformed into
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So, we have the expressions of electromagnetic waves (23) in a vacuum
satisfying every single component equation of Maxwell (10), and hence
satisfying Maxwell equations. The expression (23) is a particular
solution of Maxwell’s equations that accord with initial conditions.
It represents a kind of existing transverse cylindrical time-harmonic
electromagnetic wave mode. We obtain the electromagnetic wave mode
generated by sinusoidal electric wave by using the imaginary part of
(23).
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By inserting the real part of (23), the electromagnetic wave generated
by cosine electric wave can be obtained
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5. CONCLUSION

From Maxwell’ theory, if the electric field in space changes, the
magnetic field at the same place would change and these changing
electric field and magnetic field will generate new changing electric
field and magnetic field in farther space. Consequently, the changed
electric field and magnetic field are not confined to a region but
propagate from near site to farther places. The propagation of
electromagnetic field forms electromagnetic waves. The characteristics
of the electromagnetic wave are actually described by the solutions
of the Maxwell equations [20–22]. The electromagnetic wave is a
transverse wave, which is just determined by the transverse wave
conditions of the Maxwell equations, ∇ ·E = 0 and ∇ ·B = 0.

Since the classical theory first preconcerts the forms of solutions
before solving the Maxwell equations, the obtained transverse
electromagnetic wave mode shows a most incredible characteristic that
the electric field and magnetic field are in phase everywhere. Now
that the periodic changing electric field generate periodic changing
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magnetic field, the process of the transmission of an electromagnetic
wave is that of energy radiation, and the electromagnetic energy is
transmitted with the electromagnetic waves. If the maximum or
minimum value of electric field and magnetic field in an electromagnetic
wave are always obtained simultaneously, how do the electric energy
and magnetic energy interchange? Consequently, we conclude that the
classical electromagnetic wave in which the electric field and magnetic
field are in phase everywhere violates the law of conservation of energy.

We strive to maintain the conclusions of classical theory, but
the initial condition of Maxwell equations has always been there.
We wish to know the solutions of the Maxwell equations with a
certain initial condition. The cylindrical transverse electromagnetic
wave modes in a vacuum are hence derived. It can be determined
that, with the solutions of Maxwell equations obtained under initial
values, the existing electric field vector and magnetic field vector, the
velocity vector of the plane or cylindrical electromagnetic wave are
vertical to one another. Nevertheless, the amplitude ratio of electric
field and magnetic field is not constant in space, and their phase
difference changes as well, so that they do not reach maximum or
zero simultaneously.
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