1. Ben Haddi, S., A. Zugari, A. Zakriti, and S. Achraou, "A compact microstrip T-shaped resonator band pass filter for 5G applications," 2020 International Conference on Intelligent Systems and Computer Vision (ISCV), 1-5, Jun. 2020.
2. Ben Haddi, S., A. Zugari, A. Zakriti, and S. Achraou, "5G narrow-band band-pass filter using parallel coupled lines and L-shaped resonator," 2020 International Symposium on Advanced Electrical and Communication Technologies (ISAECT), 4 pages, 978-1-6654-2222-2/20/$31.00⃝c 2020 IEEE, 2020.
3. Achraou, S., H. Elftouh, A. Farkhsi, A. Zakriti, and S. Ben Haddi, "Substrate integrated waveguide bandpass filter for mm-Wave applications," Procedia Manufacturing, Vol. 46, 766-770, 2020.
doi:10.1016/j.promfg.2020.04.002
4. Achraou, S., S. Ben Haddi, A. Zakriti, M. El Ouahabi, and A. Farkhsi, "A compact SIW bandpass filter with double slit complementary split ring resonator," 2020 International Symposium on Advanced Electrical and Communication Technologies (ISAECT), 1-4, IEEE, Marrakech, Morocco, Nov. 2020.
5. Ben Haddi, S., A. Zugari, A. Zakriti, and S. Achraou, "Design of a band-stop planar filter for telecommunications applications," Procedia Manufacturing, Vol. 46, 788-792, 2020.
doi:10.1016/j.promfg.2020.04.006
6. Ben Haddi, S., A. Zugari, A. Zakriti, M. El Ouahabi, and D. El Khamlichi, "Compact microstrip diplexer design using new octagonal resonators for 5G and Wi-Fi applications," J. Inst., Vol. 18, No. 3, P03033, Mar. 2023.
7. Ben Haddi, S., A. Zugari, and A. Zakriti, "Low losses and compact size microstrip diplexer based on open-loop resonators with new zigzag junction for 5G sub-6-GHz and Wi-Fi communications," Progress In Electromagnetics Research Letters, Vol. 102, 109-117, 2022.
doi:10.2528/PIERL21120305
8. Ben Haddi, S., A. Zugari, A. Zakriti, and S. Achraou, "High isolation microstrip bandpass diplexer for industry 4.0 communication," Microsyst. Technol., Vol. 28, No. 5, 1167-1178, May 2022.
doi:10.1007/s00542-022-05276-x
9. Salehi, M. R., S. Keyvan, E. Abiri, and L. Noori, "Compact microstrip diplexer using new design of triangular open loop resonator for 4G wireless communication systems," AEU --- International Journal of Electronics and Communications, Vol. 70, No. 7, 961-969, Jul. 2016.
doi:10.1016/j.aeue.2016.04.015
10. Basheer, A. and A. Ezzulddin, "A dual-band coupled line based microstrip diplexer for wireless applications," Indian Journal of Scientific Research, Aug. 2020.
11. Chinig, A., et al., "A new microstrip diplexer using coupled stepped impedance resonators," International Journal of Electronics and Communication Engineering, Vol. 9, No. 1, 2015.
12. Danaeian, M., K. Afrooz, and A. Hakimi, "Miniaturized substrate integrated waveguide diplexer using open complementary split ring resonators," Radioengineering, Vol. 26, 30-37, Apr. 2017.
doi:10.13164/re.2017.0030
13. Pozar, D. M., Microwave Engineering, John Wiley & Sons, 2011.
14. Sie King, T., A. T. Ying Ying, and S. Hieng Tiong, "A microstrip diplexer using folded hairpins," 2011 IEEE International RF & Microwave Conference, 226-229, Dec. 2011.
doi:10.1109/RFM.2011.6168735
15. Xiao, J.-K., M. Zhang, and J.-G. Ma, "A compact and high-isolated multiresonator-coupled diplexer," IEEE Microwave and Wireless Components Letters, Vol. 28, No. 11, 999-1001, Nov. 2018.
doi:10.1109/LMWC.2018.2873214
16. Dahlan, S. H. and M. Esa, "Design of folded half wave resonator," 2005 Asia-Pacific Conference on Applied Electromagnetics, 5, Dec. 2005.
17. Saleh, S., W. Ismail, I. S. Z. Abidin, et al. "Size reduction percentage study of 5G hairpin bandpass filter nonuniform transmission line resonator," 2019 IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE), 1-5, Nov. 2019.
18. Rezaei, A., L. Noori, and H. Mohammadi, "Miniaturized quad-channel microstrip diplexer with low insertion loss and wide stopband for multi-service wireless communication systems," Wireless Netw., Vol. 25, No. 6, 2989-2996, Aug. 2019.
doi:10.1007/s11276-018-1693-4
19. Xiao, J.-K., M. Zhu, Y. Li, L. Tian, and J.-G. Ma, "High selective microstrip bandpass filter and diplexer with mixed electromagnetic coupling," IEEE Microwave and Wireless Components Letters, Vol. 25, No. 12, 781-783, Dec. 2015.
doi:10.1109/LMWC.2015.2495194
20. Zhang, Y.-J., J. Cai, and J.-X. Chen, "Separately-designable diplexer with multiple transmission zeroes using common stub-loaded SIR," International Journal of Microwave and Wireless Technologies, Vol. 13, No. 1, 39-45, Feb. 2021.
doi:10.1017/S1759078720000483
21. Xu, J.-X. and X. Y. Zhang, "Compact high-isolation LTCC diplexer using common stub-loaded resonator with controllable frequencies and bandwidths," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, No. 11, 4636-4644, Nov. 2017.
doi:10.1109/TMTT.2017.2697855
22. Rezaei, A., L. Noori, and H. Mohammadi, "Design of a miniaturized microstrip diplexer using coupled lines and spiral structures for wireless and WiMAX applications," Analog. Integr. Circ. Sig. Process., Vol. 98, No. 2, 409-415, Feb. 2019.
doi:10.1007/s10470-018-1365-4
23. Xiao, J.-K., M. Zhang, and J.-G. Ma, "High selective microstrip bandpass filter and diplexer with common magnetic coupling," Electronics Letters, Vol. 54, No. 25, 1438-1440, 2018.
doi:10.1049/el.2018.6903
24. Li, Q., Y. Zhang, and C.-T. M. Wu, "Compact and high-isolation microstrip diplexer using distributed coupling feeding line," Microwave and Optical Technology Letters, Vol. 60, No. 1, 192-196, 2018.
doi:10.1002/mop.30938