Vol. 105

Latest Volume
All Volumes
All Issues
2022-08-04

A Flexible, Foldable Metamaterial Absorber Fabricated by Matrix-Assisted Catalytic Printing

By Pengyu Gong, Huan Lu, Bo Yang, Ruisheng Guo, Siqi Zhang, and Rongrong Zhu
Progress In Electromagnetics Research Letters, Vol. 105, 131-137, 2022
doi:10.2528/PIERL22070410

Abstract

Metamaterial absorbers are widely used in sensing, cloaking, imaging, etc. Currently, most metamaterial absorbers are integrated with hard substrates, which limit their applications for non-planar and irregularsurfaces. In this paper, a flexible, foldable metamaterial absorber is proposed using a matrix-assisted catalytic printing method. The absorber is composed of periodically patterned eight-round sector copper arrays supported by a polyethylene terephthalate substrate. Experimental results show that the absorber exhibits one absorption peak near 10.2 GHz.

Citation


Pengyu Gong, Huan Lu, Bo Yang, Ruisheng Guo, Siqi Zhang, and Rongrong Zhu, "A Flexible, Foldable Metamaterial Absorber Fabricated by Matrix-Assisted Catalytic Printing," Progress In Electromagnetics Research Letters, Vol. 105, 131-137, 2022.
doi:10.2528/PIERL22070410
http://jpier.org/PIERL/pier.php?paper=22070410

References


    1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Physics-Uspekhi, Vol. 10, No. 4, 509-514, 1968.
    doi:10.1070/PU1968v010n04ABEH003699

    2. Shamonina, E. and L. Solymar, "Metamaterials: How the subject started," Metamaterials, Vol. 1, 12-18, 2007.
    doi:10.1016/j.metmat.2007.02.001

    3. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, No. 5801, 977-980, 2006.
    doi:10.1126/science.1133628

    4. Gao, X., W. L. Yang, H. Ma, Q. Cheng, X. Yu, and T. Cui, "A reconfigurable broadband polarization converter based on an active metasurface," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 11, 6086-6095, 2018.
    doi:10.1109/TAP.2018.2866636

    5. Tian, X., P. Lee, Y. Tan, T. Wu, H. Yao, M. Zhang, and J. Ho, "Wireless body sensor networks based on metamaterial textiles," Nature Electronics, Vol. 2, No. 6, 243-251, 2019.
    doi:10.1038/s41928-019-0257-7

    6. Cai, T., S. Tang, B. Zheng, G. Wang, W. Ji, C. Qian, and H. Chen, "Ultrawideband chromatic aberration-free meta-mirrors," Advanced Photonics, Vol. 3, No. 1, 016001, 2020.
    doi:10.1117/1.AP.3.1.016001

    7. Beruete, M. and I. Jáuregui-López, "Terahertz sensing based on metasurfaces," Advanced Optical Materials, Vol. 8, No. 3, 1900721, 2020.
    doi:10.1002/adom.201900721

    8. Lu, H., B. Zheng, C. Qian, Z. Wang, Y. Yang, and H. Chen, "Frequency-controlled focusing using achromatic metasurface," Advanced Optical Materials, Vol. 9, No. 1, 2001311, 2021.
    doi:10.1002/adom.202001311

    9. Zhang, J., X. Wei, I. D. Rukhlenko, H. T. Chen, and W. Zhu, "Electrically tunable metasurface with independent frequency and amplitude modulations," ACS Photonics, Vol. 7, No. 1, 265-271, 2019.
    doi:10.1021/acsphotonics.9b01532

    10. Tan, Q., B. Zheng, T. Cai, C. Qian, R. Zhu, X. Li, and H. Chen, "Broadband spin-locked metasurface retroreflector," Advanced Science, 2201397, 2022.
    doi:10.1002/advs.202201397

    11. Yao, H., H. Mei, W. Zhang, S. Zhong, and X. Wang, "Theoretical and experimental research on terahertz metamaterial sensor with exible substrate," IEEE Photonics Journal, Vol. 14, No. 1, 1-9, 2021.
    doi:10.1109/JPHOT.2021.3124414

    12. Huang, M., B. Zheng, T. Cai, X. Li, J. Liu, C. Qian, and H. Chen, "Machine-learning-enabled metasurface for direction of arrival estimation," Nanophotonics, Vol. 11, No. 9, 2001-2010, 2022.
    doi:10.1515/nanoph-2021-0663

    13. He, Q., S. Sun, S. Xiao, and L. Zhou, "High-efficiency metasurfaces: Principles, realizations, and applications," Advanced Optical Materials, Vol. 6, 1800415, 2018.
    doi:10.1002/adom.201800415

    14. Ding, F., A. Pors, and S. I. Bozhevolnyi, "Gradient metasurfaces: A review of fundamentals and applications," Reports on Progress in Physics, Vol. 81, 026401, 2018.
    doi:10.1088/1361-6633/aa8732

    15. Di Renzo, M., A. Zappone, M. Debbah, M. S. Alouini, C. Yuen, J. De Rosny, and S. Tretyakov, "Smart radio environments empowered by reconfigurable intelligent surfaces: How it works, state of research, and the road ahead," IEEE Journal on Selected Areas in Communications, Vol. 38, No. 11, 2450-2525, 2020.
    doi:10.1109/JSAC.2020.3007211

    16. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and J. Padilla, "Perfect metamaterial absorber," Physical Review Letters, Vol. 100, 207402, 2008.
    doi:10.1103/PhysRevLett.100.207402

    17. Tao, H., N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, "A metamaterial absorber for the terahertz regime: Design, fabrication and characterization," Optics Express, Vol. 16, 7181-7188, 2008.
    doi:10.1364/OE.16.007181

    18. Sun, P., C. You, A. Mahigir, T. Liu, F. Xia, W. Kong, and M. Yun, "Graphene-based dual-band independently tunable infrared absorber," Nanoscale, Vol. 10, No. 33, 15564-15570, 2018.
    doi:10.1039/C8NR02525H

    19. Zhao, X., Y. Wang, J. Schalch, G. Duan, K. Cremin, and J. Zhang, "Optically modulated ultra-broadband all-silicon metamaterial terahertz absorbers," ACS Photonics, Vol. 6, No. 4, 830-837, 2019.
    doi:10.1021/acsphotonics.8b01644

    20. Zou, H. and Y. Cheng, "Design of a six-band terahertz metamaterial absorber for temperature sensing application," Optical Materials, Vol. 88, 674-679, 2019.
    doi:10.1016/j.optmat.2019.01.002

    21. Xiong, H., Q. T. Ji, Bashir, and F. Yang, "Dual-controlled broadband terahertz absorber based on graphene and dirac semimetal," Optics Express, Vol. 28, No. 9, 13884-13894, 2020.
    doi:10.1364/OE.392380

    22. Verma, V. K., S. K. Mishra, K. K. Kaushal, N. Gupta, and B. Appasani, "An octaband polarization insensitive terahertz metamaterial absorber using orthogonal elliptical ring resonators," Plasmonics, Vol. 15, No. 1, 75-81, 2020.
    doi:10.1007/s11468-019-01010-y

    23. Lin, K. T., H. Lin, T. Yang, and B. Jia, "Structured graphene metamaterial selective absorbers for high efficiency and omnidirectional solar thermal energy conversion," Nature Communications, Vol. 11, No. 1, 1389, 2020.
    doi:10.1038/s41467-020-15116-z

    24. Qi, L. and C. Liu, "Broadband multilayer graphene metamaterial absorbers," Optical Materials Express, Vol. 9, No. 3, 1298-1309, 2019.
    doi:10.1364/OME.9.001298

    25. Feng, H., Z. Xu, L. I. Kai, M. Wang, and M. Yun, "Tunable polarization-independent and angle-insensitive broadband terahertz absorber with graphene metamaterials," Optics Express, Vol. 29, No. 5, 7158-7167, 2021.
    doi:10.1364/OE.418865

    26. Yao, Y., Z. Liao, Z. Liu, X. Liu, J. Zhou, G. Liu, and J. Wang, "Recent progresses on metamaterials for optical absorption and sensing: A review," Journal of Physics D: Applied Physics, Vol. 54, No. 11, 113002, 2021.
    doi:10.1088/1361-6463/abccf0

    27. Guo, R., Y. Yu, Z. Xie, X. Liu, X. Zhou, and Y. Gao, "Matrix-assisted catalytic printing for the fabrication of multiscale, flexible, foldable, and stretchable metal conductors," Advanced Materials, Vol. 25, No. 24, 3343-3350, 2013.
    doi:10.1002/adma.201301184

    28. Azzaroni, O., Z. Zheng, Z. Yang, and W. Huck, "Polyelectrolyte brushes as efficient ultrathin platforms for site-selective copper electroless deposition," Langmuir the Acs Journal of Surfaces & Colloids, Vol. 22, No. 16, 6730-6733, 2006.
    doi:10.1021/la060891+

    29. Liu, X., H. Chang, Y. Li, W. T. Huck, and Z. Zheng, "Polyelectrolyte-bridged metal/cotton hierarchical structures for highly durable conductive yarns," ACS Applied Materials & Interfaces, Vol. 2, No. 2, 529-535, 2010.
    doi:10.1021/am900744n

    30. Wang, X., H. Hu, Y. Shen, X. Zhou, and Z. Zheng, "Stretchable conductors with ultrahigh tensile strain and stable metallic conductance enabled by prestrained polyelectrolyte nanoplatforms," Advanced Materials, Vol. 23, No. 27, 3090-3094, 2011.
    doi:10.1002/adma.201101120