Vol. 106

Latest Volume
All Volumes
All Issues
2022-09-16

Design of Cylindrical Holographic Impedance Metasurface for Near-Field Focusing

By Heng Wang, Shixing Yu, and Na Kou
Progress In Electromagnetics Research Letters, Vol. 106, 129-134, 2022
doi:10.2528/PIERL22062204

Abstract

In this paper, a design method for near-field focusing cylindrical holographic impedance metasurfaces is proposed. Firstly, based on the design theory of planar holographic impedance metasurface, we deduce the design formula for cylindrical holographic impedance metasurface by using the method of major axis matching. Then the feasibility of theoretical analysis is verified by simulation and measurement. The results show that the design method can effectively realize the near-field focusing, which can provide a reference for the application of conformal devices for microwave hyperthermia and energy harvesting.

Citation


Heng Wang, Shixing Yu, and Na Kou, "Design of Cylindrical Holographic Impedance Metasurface for Near-Field Focusing," Progress In Electromagnetics Research Letters, Vol. 106, 129-134, 2022.
doi:10.2528/PIERL22062204
http://jpier.org/PIERL/pier.php?paper=22062204

References


    1. Buffi, A., P. Nepa, and G. Manara, "Design criteria for near-field-focused planar arrays," IEEE Antennas Propag. Mag., Vol. 54, No. 1, 40-50, 2012.
    doi:10.1109/MAP.2012.6202511

    2. Karimkashi, S. and A. A. Kishk, "Focused microstrip array antenna using a Dolph-Chebyshev near-field design," IEEE Trans. Antennas Propag., Vol. 57, No. 12, 3813-3820, 2009.
    doi:10.1109/TAP.2009.2033435

    3. Nguyen, P. T., A. M. Abbosh, and S. Crozier, "3-D focused microwave hyperthermia for breast cancer treatment with experimental validation," IEEE Trans. Antennas Propag., Vol. 62, No. 7, 3489-3500, 2017.
    doi:10.1109/TAP.2017.2700164

    4. Li, P.-F., S.-W. Qu, and S. Yang, "Two-dimensional imaging based on near-field focused array antenna," IEEE Antennas Wirel. Propag. Lett., Vol. 8, No. 2, 274-278, 2018.
    doi:10.1109/LAWP.2018.2888853

    5. Li, L., et al., "Progress, challenges, and perspective on metasurfaces for ambient radio frequency energy harvesting," Appl. Phys. Lett., Vol. 116, No. 6, 060501, 2020.
    doi:10.1063/1.5140966

    6. Reid, D. R. and G. S. Smith, "A comparison of the focusing properties of a Fresnel zone plate with a doubly-hyperbolic lens for application in a free-space, focused-beam measurement system," IEEE Trans. Antennas Propag., Vol. 57, No. 2, 499-507, 2009.
    doi:10.1109/TAP.2008.2011392

    7. Karimkashi, S. and A. A. Kishk, "Focusing properties of Fresnel zone plate lens antennas in the near-field region," IEEE Trans. Antennas Propag., Vol. 59, No. 5, 1481-1487, 2011.
    doi:10.1109/TAP.2011.2123069

    8. You, B., Y. Liu, J. Zhou, and H. Chou, "Numerical synthesis of dualband reflectarray antenna for optimum near-field radiation," IEEE Antennas Wirel. Propag. Lett., Vol. 11, 760-762, 2012.

    9. Plaza, E. G., et al., "An ultrathin 2-bit near-field transmitarray lens," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 1784-1787, 2017.

    10. Li, Y., et al., "Cylindrical conformal array antenna for near field focusing," Int. J. RF Microw. Comput.-Aid. Eng., Vol. 32, No. 6, e23135, 2022.
    doi:10.1002/mmce.23135

    11. He, Q., et al., "Manipulating electromagnetic waves with metamaterials: Concept and microwave realizations," Chin. Phys. B, Vol. 23, No. 4, 047808, 2014.
    doi:10.1088/1674-1056/23/4/047808

    12. Holloway, C. L., E. F. Kuester, and D. Novotny, "Waveguides composed of metafilms/metasurfaces: The two-dimensional equivalent of metamaterials," IEEE Antennas Wirel. Propag. Lett., Vol. 8, 525-529, 2009.
    doi:10.1109/LAWP.2009.2018123

    13. Yu, S., et al., "Design of dual-polarized reflectarray for near-field shaped focusing," IEEE Antennas Wirel. Propag. Lett., Vol. 20, No. 5, 803-807, 2021.
    doi:10.1109/LAWP.2021.3063848

    14. Huang, H. and J. Zhang, "Multifunctional near field focusing transmission metasurface based on polarization sensitivity," Microw. Opt. Technol. Lett., Vol. 63, No. 7, 1868-1874, 2021.
    doi:10.1002/mop.32858

    15. Pandi, S., C. A. Balanis, and C. R. Birtcher, "Design of scalar impedance holographic metasurfaces for antenna beam formation with desired polarization," IEEE Trans. Antennas Propag., Vol. 63, No. 7, 3016-3024, 2015.
    doi:10.1109/TAP.2015.2426832

    16. Fong, B. H., et al., "Scalar and tensor holographic artificial impedance surfaces," IEEE Trans. Antennas Propag., Vol. 58, No. 10, 3212-3221, 2010.
    doi:10.1109/TAP.2010.2055812

    17. Pandi, S., C. A. Balanis, and C. R. Birtcher, "Design of scalar impedance holographic metasurfaces for antenna beam formation with desired polarization," IEEE Trans. Antennas Propag., Vol. 61, No. 4, 1403-1413, 2013.