Vol. 105

Latest Volume
All Volumes
All Issues
2022-08-01

Efficient Broadband Power Amplifier Using Klopfenstein Taper as Output Matching Network

By Duo-Wei Liu, Fei Cheng, Chao Gu, and Ka-Ma Huang
Progress In Electromagnetics Research Letters, Vol. 105, 103-109, 2022
doi:10.2528/PIERL22030201

Abstract

An efficient 0.6-4.2 GHz GaN-HEMT power amplifier based on Klopfenstein taper is proposed in this letter. A method based on source-pull/load-pull simulation has been used to find the optimum source and load impedances across the broad band. Then the Klopfenstein taper is studied and adopted for the output matching circuit design to achieve broadband performance. The measured results show that our proposed power amplifier has a fractional bandwidth of 150%, with saturated output power ranging from 39.45 to 42.32 dBm, power added efficiency from 45.1% to 64.8%, and over 9 dB gain at the whole working band of 0.6-4.2 GHz. The fabricated power amplifier can cover most of the wireless communication frequency bands.

Citation


Duo-Wei Liu, Fei Cheng, Chao Gu, and Ka-Ma Huang, "Efficient Broadband Power Amplifier Using Klopfenstein Taper as Output Matching Network," Progress In Electromagnetics Research Letters, Vol. 105, 103-109, 2022.
doi:10.2528/PIERL22030201
http://jpier.org/PIERL/pier.php?paper=22030201

References


    1. Rawat, K., M. S. Hashmi, and F. M. Ghannouchi, "Dual-band RF circuits and components for multi-standard software defined radios," IEEE Circuits and Systems Magazine, Vol. 2, No. 1, 12-32, Firstquarter 2012.
    doi:10.1109/MCAS.2011.2181074

    2. Zhang, Z., Z. Cheng, H. Ke, and G. Liu, "A broadband high-efficiency power amplifier by using branch line coupler," IEEE Microw. Wireless Compon. Lett., Vol. 30, No. 9, 880-883, Sept. 2020.
    doi:10.1109/LMWC.2020.3014222

    3. Poluri, N. and M. M. De Souza, "Designing a broadband amplifier without load-pull," IEEE Microw. Wireless Compon. Lett., Vol. 31, No. 6, 593-596, Jun. 2021.
    doi:10.1109/LMWC.2021.3061804

    4. Wright, P., J. Lees, P. J. Tasker, J. Benedikt, and S. C. Cripps, "An efficient, linear, broadband class-J-mode PA realised using RF waveform engineering," 2009 IEEE MTT-S International Microwave Symposium Digest, 653-656, 2009.
    doi:10.1109/MWSYM.2009.5165781

    5. Canning, T., P. J. Tasker, and S. C. Cripps, "Continuous mode power amplifier design using harmonic clipping contours: Theory and practice," IEEE Trans. Microw. Theory Techn., Vol. 62, No. 1, 100-110, Jan. 2014.
    doi:10.1109/TMTT.2013.2292675

    6. Dai, Z., S. He, J. Peng, C. Huang, W. Shi, and J. Pang, "A semianalytical matching approach for power amplifier with extended Chebyshev function and real frequency technique," IEEE Trans. Microw. Theory Techn., Vol. 65, No. 10, 3892-3902, Oct. 2017.
    doi:10.1109/TMTT.2017.2687899

    7. Pozar, D. M., Microwave Engineering, Wiley, New York, 2011.

    8. Zhang, Z. and Z. Cheng, "A multi-octave power amplifier based on mixed continuous modes," IEEE Access, Vol. 7, 178201-178208, 2019.
    doi:10.1109/ACCESS.2019.2957926

    9. Chen, H., J.-X. Xu, Z.-H. Kong, W.-H. Chen, and X. Y. Zhang, "Broadband high-efficiency power amplifier with quasi-elliptic low-pass response," IEEE Access, Vol. 8, 52566-52574, 2020.
    doi:10.1109/ACCESS.2020.2980688