Vol. 103
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-03-07
Design of Multiband Band-Pass Filters Based on Novel Associated Band-Stop Resonators
By
Progress In Electromagnetics Research Letters, Vol. 103, 65-72, 2022
Abstract
Although the design of multiband band-pass filters (MBPFs) has been thoroughly studied in the literature, the synthesis of high-order and multiple pass-band filters with controllable transmission zeros (TZs) and high band-to-band isolation is hardly feasible. In this paper, we present a novel design strategy to cope with this issue. Adopting a star-like topology, the proposed design method is based on the parallel association of N-1 band-stop stepped-impedance stubs to form an N pass-bands resonator. We show that such a simple design principle allows the accurate control of TZs positions. The principle and theory of these associated band-stop resonators (ABSRs) based filter are exposed, and their efficiency is shown through the synthesis, design, simulation, and measurement of quad-band and quint-band band-pass filters. Very good in-band filter performance and very high band-to-band isolation are achieved for both filters without the need for complex optimization process. These results make the ABSRs an attractive solution to achieve multiple band responses with advanced specifications.
Citation
Yi Wu, Erwan Fourn, and Philippe Besnier, "Design of Multiband Band-Pass Filters Based on Novel Associated Band-Stop Resonators," Progress In Electromagnetics Research Letters, Vol. 103, 65-72, 2022.
doi:10.2528/PIERL22011104
References

1. Hong, J. S. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, J. Wiley and Sons, New York, USA, 2001.
doi:10.1002/0471221619

2. Weng, M.-H., S.-K. Liu, H.-W. Wu, and C.-H. Hung, "A dual-band bandpass filter having wide and narrow bands simultaneously using multilayered stepped impedance resonators," Progress In Electromagnetics Research Letters, Vol. 13, 139-147, 2010.
doi:10.2528/PIERL10022401

3. Lv, D.-D., L. Meng, and Z. Zou, "Miniaturized HMSIW dual-band filter based on CSRRs and microstrip open-stubs," Progress In Electromagnetics Research Letters, Vol. 77, 97-102, 2018.
doi:10.2528/PIERL18030202

4. Xu, J., W. Wu, and C. Miao, "Compact microstrip dual-/tri-/quad-band bandpass filter using open stubs loaded shorted stepped-impedance resonator," IEEE Trans. Microw. Theory Tech., Vol. 61, 3187-3199, 2013.
doi:10.1109/TMTT.2013.2273759

5. Wu, H.-W. and R.-Y. Yang, "A new quad-band bandpass filter using asymmetric stepped impedance resonators," IEEE Microw. Wireless Compon. Lett., Vol. 21, No. 4, 203-205, Apr. 2011.
doi:10.1109/LMWC.2011.2106153

6. Zhang, Y., L. Gao, and X. Y. Zhang, "Compact quad-band bandpass filter for DCS/WLAN/WiMAX/5G Wi-Fi application," IEEE Microw. Wireless Compon. Lett., Vol. 25, No. 10, 645-647, May 2015.
doi:10.1109/LMWC.2015.2463227

7. Chen, C., "Design of a compact microstrip quint-band filter based on the tri-mode stub-loaded stepped-impedance resonators," IEEE Microw. Wireless Compon. Lett., Vol. 22, No. 7, 357-359, Jul. 2012.
doi:10.1109/LMWC.2012.2202894

8. Wu, Y., L. Cui, Z. Zhuang, W. Wang, and Y. Liu, "A simple planar dual-band bandpass filter with multiple transmission poles and zeros," IEEE Trans. Circuits Syst. II: Exp. Briefs, Vol. 65, 56-60, 2018.
doi:10.1109/TCSII.2017.2702191

9. Wu, Y., E. Fourn, P. Besnier, and C. Quendo, "Direct synthesis of multiband bandpass filters with generalized frequency transformation methods," IEEE Trans. Microw. Theory Tech., Vol. 69, 3820-3831, 2021.
doi:10.1109/TMTT.2021.3086835

10. Quendo, C., E. Rius, A. Manchec, et al. "Planar tri-band filter based on dual behavior resonator," Proc. Eur. Microw. Conf., 269-272, Oct. 2005.

11. Garcia, R. G., R. L. Sanchez, D. Psychogiou, and D. Peroulis, "Multi-stub-loaded differential mode planar multiband bandpass filters," IEEE Trans. on Circuits and Systems - II: Express Briefs, Vol. 65, No. 3, 271-275, 2018.
doi:10.1109/TCSII.2017.2688336

12. Hsu, K. W., J. H. Lin, and W. H. Tu, "Compact sext-band bandpass filter with sharp rejection response," IEEE Microw. Wireless Compon. Lett., Vol. 24, 593-595, 2014.
doi:10.1109/LMWC.2014.2328895