Vol. 103
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-02-21
A New Structure for the Coaxial Magnetic Gear with HTS Bulks for Fitness Car
By
Progress In Electromagnetics Research Letters, Vol. 103, 39-48, 2022
Abstract
This paper proposes a novel coaxial magnetic gear (CMG) with eccentric permanent magnet structure and unequal Halbach arrays for achieving sinusoidal air-gap flux density and high output torque. The proposed model has a high temperature superconducting (HTS) bulks to replace the epoxy resin in the conventional stationary ring. According to the Meissner effect and one-sided field, the HTS bulks could enhance the modulation effect. The permanent magnets (PMs) on the inner and outer rotors are distributed in Halbach array, in which the PMs are arranged regularly on the outer rotor, and the inner rotor is an eccentric structure. So the inner nonuniform air gap can be obtained. The proposed model with the pole pairs of 4 and 17 for the inner and outer rotors is established, and using finite element analysis (FEA) a calculated torque is up to 350.8 N.m. It is 2.16 times of the torque of conventional CMG.
Citation
Yan Wang, and Libing Jing, "A New Structure for the Coaxial Magnetic Gear with HTS Bulks for Fitness Car," Progress In Electromagnetics Research Letters, Vol. 103, 39-48, 2022.
doi:10.2528/PIERL22010902
References

1. Jing, L., Z. Huang, J. Chen, and R. Qu, "An asymmetric pole coaxial magnetic gear with unequal Halbach arrays and spoke structure," IEEE Trans. Appl. Supercond., Vol. 30, No. 4, 1-4, Jun. 2020.

2. Atallah, K. and D. Howe, "A novel high-performance magnetic gear," IEEE Trans. Magn., Vol. 37, No. 4, 2844-2846, Jul. 2001.
doi:10.1109/20.951324

3. Padmanathan, P. and J. Z. Bird, "A continuously variable magnetic gear," IEEE Proc. IEMDC, 367-373, May 2013.

4. Fan, Y., L. Gu, Y. Luo, X. Han, and M. Cheng, "Investigation of a new flux-modulated permanent magnet brushless motor for EVs," The Scientific World Journal, Vol. 2014, Art. No. 540797, Apr. 2014.

5. Du, Y., K. T. Chau, and M. Cheng, "A linear stator permanent magnet vernier HTS machine for wave energy conversion," IEEE Trans. Appl. Supercond., Vol. 22, No. 3, Art. No. 5202505, Jun. 2012.
doi:10.1109/TASC.2012.2185473

6. Frank, N. W., S. Pakdelian, and H. A. Toliyat, "Passive suppression of transient oscillations in the concentric planetary magnetic gear," IEEE Trans. Energy Convers., Vol. 26, No. 3, 933-939, Sep. 2011.
doi:10.1109/TEC.2011.2143715

7. Uppalapati, K. K., J. Z. Bird, and J. Wright, "A magnetic gearbox with an active region torque density of 239 Nm/L," IEEE Energy Conversion Congress and Exposition, 1423-1428, 2014.

8. Jian, L., K. Chau, W. Li, and J. Li, "A novel coaxial magnetic gear using bulk HTS for industrial applications," IEEE Trans. Appl. Supercond., Vol. 20, No. 3, 981-984, Jun. 2010.
doi:10.1109/TASC.2010.2040609

9. Cansiz, A. and E. Akyerden, "The use of high temperature superconductor bulk in a co-axial magnetic gear," Cryogenics, Vol. 98, 80-86, 2019.
doi:10.1016/j.cryogenics.2019.01.008

10. Liu, C., H. Zhu, and R. Dong, "Linear magnetic gear with HTS bulks for wave energy conversion," IET Renew. Power Gen., Vol. 13, No. 13, 2430-2434, 2019.
doi:10.1049/iet-rpg.2018.6109

11. Campbell, A., "A superconducting magnetic gear," Supercond. Sci. Technol., Vol. 29, No. 5, 054008, 2016.
doi:10.1088/0953-2048/29/5/054008

12. Yin, X., Y. Fang, and P. Pfister, "A novel single-PM-array magnetic gear with HTS bulks," IEEE Trans. Appl. Supercond., Vol. 27, No. 4, ID. 5202705, Jun. 2017.
doi:10.1109/TASC.2017.2672676