Vol. 101
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2021-11-30
Dipole Antenna Design for Portable Devices Operating in the 5G NR Frequency Bands
By
Progress In Electromagnetics Research Letters, Vol. 101, 43-48, 2021
Abstract
In this paper, a dipole antenna is investigated for 5G New Radio portable devices. This antenna adopts the characteristics of multiple mode resonance. Then, by adjusting the spacing between dipole pairs, the antenna has a good impedance match in a wide frequency band. The -10 dB impedance bandwidth of the antenna is 2.31-5.34 GHz (79.2%). In the operation frequency band, the maximum gain and average gain of the antenna are 8.68 dBi and 4.67 dBi, respectively. It can be used in the 5G Sub-6 GHz NR frequency bands n7/n38/n41/n77/n78/n79 and also compatible with WLAN/WiMAX band.
Citation
Yongwei Li, Quanyuan Feng, and Liguo Zhou, "Dipole Antenna Design for Portable Devices Operating in the 5G NR Frequency Bands," Progress In Electromagnetics Research Letters, Vol. 101, 43-48, 2021.
doi:10.2528/PIERL21090401
References

1. Agiwal, M., A. Roy, and N. Saxena, "Next generation 5G wireless networks: A comprehensive survey," IEEE Commun. Surv. Tutorials, Vol. 18, No. 3, 1617-1655, 2016.
doi:10.1109/COMST.2016.2532458

2. "3GPP specification series: 38 series,", 2020, [Online]. Available: https://www.3gpp.org/DynaReport/38-series.htm.
doi:10.1109/COMST.2016.2532458

3. Jin, G., C. Deng, Y. Xu, J. Yang, and S. Liao, "Differential frequency-reconfigurable antenna based on dipoles for sub-6 GHz 5G and WLAN applications," IEEE Antennas Wirel. Propag. Lett., Vol. 19, No. 3, 472-476, 2020.
doi:10.1109/LAWP.2020.2966861

4. Zeng, J. and K. M. Luk, "Single-layered broadband magnetoelectric dipole antenna for new 5G application," IEEE Antennas Wirel. Propag. Lett., Vol. 18, No. 5, 911-915, 2019.
doi:10.1109/LAWP.2019.2905768

5. Sim, C. Y. D., H. Y. Liu, and C. J. Huang, "Wideband MIMO antenna array design for future mobile devices operating in the 5G NR frequency bands n77/n78/n79 and LTE band 46," IEEE Antennas Wirel. Propag. Lett., Vol. 19, No. 1, 74-78, 2020.
doi:10.1109/LAWP.2019.2953334

6. Tefiku, F. and E. Yamashita, "Double-sided printed strip antenna for dual frequency operation," IEEE Antennas Propag. Soc. AP-S Int. Symp., Vol. 1, 50-53, 1996.

7. Tefiku, F. and C. A. Grimes, "Design of broad-band and dual-band antennas comprised of series-fed printed-strip dipole pairs," IEEE Trans. Antennas Propag., Vol. 48, No. 6, 895-900, 2000.
doi:10.1109/8.865221

8. Quan, X., R. Li, Y. Cui, and M. M. Tentzeris, "Analysis and design of a compact dual-band directional antenna," IEEE Antennas Wirel. Propag. Lett., Vol. 11, 547-550, 2012.
doi:10.1109/LAWP.2012.2199458

9. Li, R. L., X. L. Quan, Y. H. Cui, and M. M. Tentzeris, "Directional triple-band planar antenna for WLAN/WiMax access points," Electron. Lett., Vol. 48, No. 6, 305-306, 2012.
doi:10.1049/el.2011.3448

10. Tao, J. and Q. Feng, "Dual-band magnetoelectric dipole antenna with dual-sense circularly polarized character," IEEE Trans. Antennas Propag., Vol. 65, No. 11, 5677-5685, Nov. 2017.
doi:10.1109/TAP.2017.2748282

11. Tao, J., Q. Feng, and T. Liu, "Dual-wideband magnetoelectric dipole antenna with director loaded," IEEE Antennas Wirel. Propag. Lett., Vol. 17, No. 10, 1885-1889, 2018.
doi:10.1109/LAWP.2018.2869034

12. Tao, J., Q. Feng, G. A. E. Vandenbosch, and V. Volskiy, "Director-loaded magneto-electric dipole antenna with wideband at gain," IEEE Trans. Antennas Propag., Vol. 67, No. 11, 6761-6769, 2019.
doi:10.1109/TAP.2019.2925200

13. Guo, Y. Q., Y. M. Pan, and S. Y. Zheng, "Design of series-fed, single-layer, and wideband millimeter-wave microstrip arrays," IEEE Trans. Antennas Propag., Vol. 68, No. 10, 7017-7026, 2020.
doi:10.1109/TAP.2020.3008668