Vol. 101
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2021-10-28
Radio-Propagation Measurement Based on a Low-Cost Software Defined Radio
By
Progress In Electromagnetics Research Letters, Vol. 101, 1-10, 2021
Abstract
This article reports the development and test of a radio-propagation measurement system based on an 8-bit software-defined radio. Tests are performed in an urban area at the frequency of 733 MHz and compared with numerical prediction from the Altair WinProp commercial suite. The system is portable (1.2 kg), low-cost, based on non-proprietary open-source tools and has the capability of tracking the GPS coordinates of the measured points. Frequency limit of the system is bounded by the software-defined radio in use, and the limit of this present case spans 24 MHz to 1700 MHz. The integrated system does not need user intervention after its initial setup can be operated autonomously.
Citation
Marcelo Bender Perotoni, Felipe A. A. Silva, and Marcos S. Vieira, "Radio-Propagation Measurement Based on a Low-Cost Software Defined Radio," Progress In Electromagnetics Research Letters, Vol. 101, 1-10, 2021.
doi:10.2528/PIERL21070602
References

1. Collins, T. F., R. Getz, D. Pu, and A. M. Wyglinski, Software-defined Radio for Engineers, Artech House, Norwood, 2018.

2. Lackey, R. J. and D. W. Upmal, "Speakeasy: The military software radio," IEEE Comm. Mag., Vol. 33, No. 5, 56-61, 1995.
doi:10.1109/35.392998

3. Mitola, III, J., Software Radio Architecture: Object Oriented Approaches to Wireless Systems Engineering, John Wiley and Sons, New York, 2000.
doi:10.1002/047121664X

4. Raut, R. D. and K. D. Kulat, "SDR design for cognitive radio," Fourth International Conference on Modeling, Simulation and Applied Optimization, 1-8, Apr. 2011.

5. Marimuthu, J., K. S. Bialkowski, and A. M. Abbosh, "Software-defined radar for medical imaging," IEEE Trans. Micr. Theory Techn., Vol. 64, No. 2, 643-652, 2016.

6. Costanzo, S., F. Spadafora, G. Di Massa, A. Borgia, A. Costanzo, G. Aloi, P. Pace, V. Loscri, and H. O. Moreno, "Potentialities of USRP-based software defined radar systems," Progress In Electromagnetics Research B, Vol. 53, 417-435, 2013.
doi:10.2528/PIERB13052904

7. Ralston, J. and C. S. Rargrave, "Software defined radar: An open source platform for prototype GPR development," 14th International Conference on Ground Penetrating Radar (GPR), 172-177, Jun. 2012.

8. Del Barrio, A. A., J. P. Manzano, V. M. Maroto, A. Villarin, J. Pagan, M. Zapater, J. Ayala, and R. Hermida, "Hack-RF + GNU radio: A software-defined radio to teach communication theory," International Journal of Electrical Engineering & Education, 1-18, 2019.

9. Supriyatno, B. I., T. Hidayat, A. B. Susksmono, and A. Munir, "Development of radio telescope receiver based on GNU radio and USRP," 1st International Conference on Wireless and Telematics (ICWT), 1-4, Apr. 2016.

10. Wright, D. P. and E. A. Ball, "Highly portable, low-cost SDR instrument for RF propagation studies," IEEE Trans. Instrum. Meas., Vol. 69, No. 8, 5446-5457, 2020.
doi:10.1109/TIM.2019.2959422

11. Helbet, R., P. Bechet, V. Monda, S. Miclaus, and I. Bouleanu, "Low-cost sensor based on SDR platforms for TETRA signals monitoring," Sensors, Vol. 21, 3160, 2021.
doi:10.3390/s21093160

12. Ball, D., N. Naik, and P. Jenkins, "Spectrum alerting system based on software defined radio and raspberry Pi," Proceedings of the 2017 Sensor Signal Processing for Defence Conference (SSPD), 15, Dec. 2017.

13. Pfammatter, D., D. Giustiniano, and V. Lenders, "A software-defined sensor architecture for large-scale wideband spectrum monitoring," Proceedings of the 14th International Conference on Information Processing in Sensor Networks, 71-82, Apr. 2015.

14. Zhou, C., J.Waynert, T. Plass, and R. Jacksa, "Attenuation constants of radio waves in lossy-walled rectangular waveguides," Progress In Electromagnetics Research, Vol. 142, 75-105, 2013.
doi:10.2528/PIER13061709

15. Reed, J. H., Software Radio: A Modern Approach to Radio Engineering, Prentice Hall, Upper Saddle River, 2002.

16. Andrich, C., A. Ihlow, J. Bauer, N. Beuster, and G. Del Galdo, "High-precision measurement of sine and pulse reference signals using software-defined radio," IEEE Trans. Instrum. Meas., Vol. 67, No. 5, 1132-1141, 2018.
doi:10.1109/TIM.2018.2794940

17. Stewart, R. W., L. Crockett, D. Atkinson, K. Barlee, D. Crawford, I. Chalmers, M. McLernon, and E. Sozer, "A low-cost desktop software defined radio design environment using MATLAB, simulink, and the RTL-SDR," IEEE Commun. Mag., Vol. 53, No. 9, 64-71, 2015.
doi:10.1109/MCOM.2015.7263347

18. Stewart, B., K. Barlee, D. Atkinson, and L. Crockett, Software Defined Radio Using Matlab & Simulink and the RTL-SDR, Strathclyde, Glasgow, 2017.

19. Hamid, A. F. A., M. T. A. Rahman, A. Rahman, and M. M. M. Zabidi, "Path loss analysis considering doppler shift effect on cellular communication for connected car application at rural area," IOP Conf. Ser.: Mater. Sci. Eng., 1-8, Feb. 2019.

20. Haslett, C., Essentials of Radio Wave Propagation, Cambridge, Ofcom, 2008.

21. Wahl, R., G. Wolfle, P. Wertz, P. Wildbolz, and F. Landstorfer, "Dominant path prediction model for urban scenarios," German Microwave Conference (GeMiC 2005), 1-5, Apr. 2005.

22. Kaul, S., K. Ramachandran, P. Shankar, S. Oh, M. Gruteser, I. Seskar, and T. Nadeem, "Effect of antenna placement and diversity on vehicular network communications," 4th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks, 112-121, Jun. 2007.