Vol. 97

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2021-04-08

Highly Sensitive Polymer Based Fabry-Perot Interferometer for Temperature Sensing

By Lashari Ghulam Abbas, Farhan Mumtaz, Yutang Dai, Ai Zhou, Wenbin Hu, and Muhammad Aqueel Ashraf
Progress In Electromagnetics Research Letters, Vol. 97, 87-94, 2021
doi:10.2528/PIERL21030702

Abstract

A highly sensitive temperature sensor based on a polymer cavity of a Fabry-Perot interferometer (FPI) is experimentally demonstrated. The interferometer gives ease in fabrication, and it can be formed by the induction of a thermos-sensitive polymer layer in between two single mode fibers (SMFs). The polymer is used as an FPI cavity for temperature sensing. Due to high thermal expansion coefficient (TEC) and thermos-optic coefficient (TOC) of polymer make the interferometer highly sensitive to ambient temperature. The maximum temperature sensitivity of 2.2209 nm/°C for the polymer FPI cavity of 40.61 µm in the ambient temperature range of 28°C to 34°C is obtained. The proposed sensor shows the advantages of high sensitivity, compactness, simple fabrication, and low cost. Thus, it may become a part of various practical applications in the field of environmental science and engineering sciences.

Citation


Lashari Ghulam Abbas, Farhan Mumtaz, Yutang Dai, Ai Zhou, Wenbin Hu, and Muhammad Aqueel Ashraf, "Highly Sensitive Polymer Based Fabry-Perot Interferometer for Temperature Sensing," Progress In Electromagnetics Research Letters, Vol. 97, 87-94, 2021.
doi:10.2528/PIERL21030702
http://jpier.org/PIERL/pier.php?paper=21030702

References


    1. Mumtaz, F., et al., "A design of taper-like etched multicore fiber refractive index-insensitive a temperature highly sensitive Mach-Zehnder interferometer," IEEE Sensors Journal, Vol. 20, No. 13, 7074-7081, 2020.
    doi:10.1109/JSEN.2020.2978533

    2. Li, X., L. V. Nguyen, M. Becker, H. Ebendorff-Heidepriem, D. Pham, and S. Warren-Smith, "Simultaneous measurement of temperature and refractive index using an exposed core microstructured optical fiber," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 26, No. 4, 1-7, 2019.

    3. Yu , J., S. Xu, Y. Jiang, H. Chen, and W. Feng, "Multi-parameter sensor based on the fiber Bragg grating combined with triangular-lattice four-core fiber," Optik, Vol. 208, 164094, 2020.
    doi:10.1016/j.ijleo.2019.164094

    4. Zhang, W., Y. Liu, T. Zhang, D. Yang, Y. Wang, and D. Yu, "Integrated fiber-optic Fabry-Perot interferometer sensor for simultaneous measurement of liquid refractive index and temperature," IEEE Sensors Journal, Vol. 19, No. 13, 5007-5013, 2019.
    doi:10.1109/JSEN.2019.2903583

    5. Cao, X., D. Tian, Y. Liu, L. Zhang, and T. Wang, "Sensing characteristics of helical long-period gratings written in the double-clad fiber by CO2 laser," IEEE Sensors Journal, Vol. 18, No. 18, 7481-7485, 2018.
    doi:10.1109/JSEN.2018.2855038

    6. Li, Z., Y.-X. Zhang, W.-G. Zhang, L.-X. Kong, and T.-Y. Yan, "Micro-cap on 2-core-fiber facet hybrid interferometer for dual-parameter sensing," Journal of Lightwave Technology, Vol. 37, No. 24, 6114-6120, 2019.
    doi:10.1109/JLT.2019.2946619

    7. Rao, Y.-J., Y.-P. Wang, Z.-L. Ran, and T. Zhu, "Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO2 laser pulses," Journal of Lightwave Technology, Vol. 21, No. 5, 1320, 2003.
    doi:10.1109/JLT.2003.810561

    8. Zheng, Z.-M., Y.-S. Yu, X.-Y. Zhang, Q. Guo, and H.-B. Sun, "Femtosecond laser inscribed small-period long-period fiber gratings with dual-parameter sensing," IEEE Sensors Journal, Vol. 18, No. 3, 1100-1103, 2017.
    doi:10.1109/JSEN.2017.2761794

    9. Tian, K., et al., "Simultaneous measurement of displacement and temperature based on two cascaded balloon-like bent fibre structures," Optical Fiber Technology, Vol. 58, 102277, 2020.
    doi:10.1016/j.yofte.2020.102277

    10. Yi, D., Z. Huo, Y. Geng, X. Li, and X. Hong, "PDMS-coated no-core fiber interferometer with enhanced sensitivity for temperature monitoring applications," Optical Fiber Technology, Vol. 57, 102185, 2020.
    doi:10.1016/j.yofte.2020.102185

    11. Gong, J., et al., "High sensitivity fiber temperature sensor based PDMS film on Mach-Zehnder interferometer," Optical Fiber Technology, Vol. 53, 102029, 2019.
    doi:10.1016/j.yofte.2019.102029

    12. Huang, B., et al., "In-fiber Mach-Zehnder interferometer exploiting a micro-cavity for strain and temperature simultaneous measurement," IEEE Sensors Journal, Vol. 19, No. 14, 5632-5638, 2019.
    doi:10.1109/JSEN.2019.2906243

    13. Lei, X., Y. Feng, and X. Dong, "High-temperature sensor based on a special thin-diameter fiber," Optics Communications, Vol. 463, 125386, 2020.
    doi:10.1016/j.optcom.2020.125386

    14. Tong, R.-J., Y. Zhao, H.-K. Zheng, and F. Xia, "Simultaneous measurement of temperature and relative humidity by compact Mach-Zehnder interferometer and Fabry-Perot interferometer," Measurement, Vol. 155, 107499, 2020.
    doi:10.1016/j.measurement.2020.107499

    15. Wang, J., C. Bian, T. Gang, and M. Hu, "High-sensitive Mach-Zehnder interferometer for humidity measurements based on concatenating single-mode concave cone and core-offset," Optik, Vol. 208, 164465, 2020.
    doi:10.1016/j.ijleo.2020.164465

    16. Wang, Z., L. Huang, C. Liu, H. Wang, S. Sun, and D. Yang, "Sensitivity-enhanced fiber temperature sensor based on vernier effect and dual in-line Mach-Zehnder interferometers," IEEE Sensors Journal, Vol. 19, No. 18, 7983-7987, 2019.
    doi:10.1109/JSEN.2019.2916891

    17. Qi, K., Y. Zhang, J. Sun, G. J. O. Yi, and L. Technology, "All-fiber high temperature and refractive index sensor based on three microspheres array Michelson interferometer," Optics Laser Technology, Vol. 129, 106300, 2020.
    doi:10.1016/j.optlastec.2020.106300

    18. Sun, H., M. Shao, L. Han, J. Liang, R. Zhang, and H. Fu, "Large core-offset based in-fiber Michelson interferometer for humidity sensing," Optical Fiber Technology, Vol. 55, 102153, 2020.
    doi:10.1016/j.yofte.2020.102153

    19. Domınguez-Flores, C. E., et al., "Real-time temperature sensor based on in-fiber Fabry–Perot interferometer embedded in a resin," Journal of Lightwave Technology, Vol. 37, No. 4, 1084-2019, 2019.
    doi:10.1109/JLT.2018.2886134

    20. Lei, X. and X. Dong, "High-sensitivity Fabry-Perot interferometer high-temperature fiber sensor based on vernier effect," IEEE Sensors Journal, Vol. 20, No. 10, 5292-5297, 2020.
    doi:10.1109/JSEN.2020.2970579

    21. Liu, Y., et al., "Hollow-core fiber-based all-fiber FPI sensor for simultaneous measurement of air pressure and temperature," IEEE Sensors Journal, Vol. 19, No. 23, 11236-11241, 2019.
    doi:10.1109/JSEN.2019.2934738

    22. Yang, D., et al., "Integrated optic-fiber sensor based on enclosed EFPI and structural phase-shift for discriminating measurement of temperature, pressure and RI," Optics Laser Technology, Vol. 126, 106112, 2020.
    doi:10.1016/j.optlastec.2020.106112

    23. Zhu, C., Y. Zhuang, B. Zhang, R. Muhammad, P. P. Wang, and J. Huang, "A miniaturized optical fiber tip high-temperature sensor based on concave-shaped Fabry-Perot cavity," IEEE Photonics Technology Letters, Vol. 31, No. 1, 35-38, 2018.
    doi:10.1109/LPT.2018.2881721

    24. Cheng, H., S. Wu, Q. Wang, S. Wang, and P. Lu, "In-line hybrid fiber sensor for curvature and temperature measurement," IEEE Photonics Journal, Vol. 11, No. 6, 1-11, 2019.
    doi:10.1109/JPHOT.2019.2944988

    25. Xu, H., M. Hafezi, J. Fan, J. M. Taylor, G. F. Strouse, and Z. Ahmed, "Ultra-sensitive chip-based photonic temperature sensor using ring resonator structures," Optics Express, Vol. 22, No. 3, 3098-3104, 2014.
    doi:10.1364/OE.22.003098

    26. Liu, Y., S. Li, H. Chen, J. Li, W. Zhang, and M. Wang, "Surface plasmon resonance induced high sensitivity temperature and refractive index sensor based on evanescent field enhanced photonic crystal fiber," Journal of Lightwave Technology, Vol. 38, No. 4, 919-928, 2019.
    doi:10.1109/JLT.2019.2949067

    27. Bai, Y., Y. Miao, H. Zhang, and J. Q. Yao, "Simultaneous measurement of temperature and relative humidity based on a microfiber sagnac loop and MoS2," Journal of Lightwave Technology, Vol. 38, No. 4, 840-845, 2020.
    doi:10.1109/JLT.2019.2947644

    28. Yin, J., et al., "Assembly-free-based fiber-optic micro-Michelson interferometer for high temperature sensing," IEEE Photonics Technology Letters, Vol. 28, No. 6, 625-628, 2015.
    doi:10.1109/LPT.2015.2503276

    29. Hernandez-Romano, I., D. Monzon-Hernandez, C. Moreno-Hernandez, D. Moreno-Hernandez, and J. Villatoro, "Highly sensitive temperature sensor based on a polymer-coated microfiber interferometer," IEEE Photonics Technology Letters, Vol. 27, No. 24, 2591-2594, 2015.
    doi:10.1109/LPT.2015.2478790

    30. Li, J.-X., Z.-R. Tong, L. Jing, W.-H. Zhang, J. Qin, J.-W. J. O. C. Liu, and , "Fiber temperature and humidity sensor based on photonic crystal fiber coated with graphene oxide," Optics Communications, Vol. 467, 125707, 2020.
    doi:10.1016/j.optcom.2020.125707

    31. Sun, H., et al., "A hybrid fiber interferometer for simultaneous refractive index and temperature measurements based on Fabry-Perot/Michelson interference," IEEE Sensors Journal, Vol. 13, No. 5, 2039-2044, 2013.
    doi:10.1109/JSEN.2013.2246862

    32. Salunkhe, T. T., D. J. Lee, H. K. Lee, H. W. Choi, S. J. Park, and I. T. Kim, "Enhancing temperature sensitivity of the Fabry-P´erot interferometer sensor with optimization of the coating thickness of polystyrene," Sensors, Vol. 20, No. 3, 794, 2020.
    doi:10.3390/s20030794

    33. Liu, Y., et al., "Fabrication of dual-parameter fiber-optic sensor by cascading FBG with FPI for simultaneous measurement of temperature and gas pressure," Optics Communications, Vol. 443, 166-171, 2019.
    doi:10.1016/j.optcom.2019.03.034

    34. Zhao, Y., et al., "An integrated fiber michelson interferometer based on twin-core and side-hole fibers for multiparameter sensing," Journal of Lightwave Technology, Vol. 36, No. 4, 993-997, 2017.
    doi:10.1109/JLT.2017.2753256