Vol. 97
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2021-04-06
Design of Low Profile Multiband Reflective Polarization Converter for Both Linear and Circular Polarized Waves
By
Progress In Electromagnetics Research Letters, Vol. 97, 61-68, 2021
Abstract
This paper presents a multifunctional metasurface based reflective polarization converter, to convert the polarization of incident electromagnetic wave in three adjacent frequency bands. In the first band linear to circular polarization conversion and in the remaining two bands linear to orthogonal polarization conversion is achieved. The designed metasurface consists of two circular split rings and a star-shaped split resonator which is fabricated on a metal-backed dielectric substrate. From the simulation results, it is evident that the orthogonal linear polarization conversion band is observed at 9.2 GHz and 12.8 GHz with a polarization conversion ratio of more than 92%. Similarly, it is identified that the same metasurface converts the incident linear polarized wave to circularly polarized wave at 7.3 GHz. Furthermore, the proposed metasurface maintains the handedness of the circularly polarized incident wave at 9.2 & 12.8 GHz frequency upon reflection. The proposed multifunctional polarization converter has a simple planar geometry and low profile which can be used in many applications, such as reflector antennas, imaging systems, remote sensors, and radiometers.
Citation
Surya Durga Padmaja Bikkuri, and Alapati Sudhakar, "Design of Low Profile Multiband Reflective Polarization Converter for Both Linear and Circular Polarized Waves," Progress In Electromagnetics Research Letters, Vol. 97, 61-68, 2021.
doi:10.2528/PIERL21022601
References

1. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, John Wiley & Sons, 2005.
doi:10.1002/0471754323

2. Alkurt, F. O., M. Karaaslan, M. Karaaslan, M. Furat, E. Unal, and O. Akgol, "Monopole antenna integrated cavity resonator for microwave imaging," Optical Engineering, Vol. 60, No. 1, 013106, 2021.
doi:10.1117/1.OE.60.1.013106

3. Nazeri, A., et al. "A reflection-only method for characterizing PEC-backed anisotropic materials using waveguide higher order modes," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 30, No. 10, e.22340, 2020.
doi:10.1002/mmce.22340

4. Mahmud, R. H., H. N. Awl, Y. I. Abdulkarim, M. Karaaslan, and M. J. Lancaster, "Filtering two-element waveguide antenna array based on solely resonators," AEU-International Journal of Electronics and Communications, Vol. 121, 153232, 2020.
doi:10.1016/j.aeue.2020.153232

5. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "A perfect metamaterial absorber," Physical Review Letters, Vol. 100, No. 20, 1-6, 2008.
doi:10.1103/PhysRevLett.100.207402

6. Ghosh, J. and D. Mitra, "Restoration of antenna performance in the vicinity of metallic cylinder in implantable scenario," IET Microwaves, Antennas & Propagation, Vol. 14, No. 12, 1440-1445, 2020.
doi:10.1049/iet-map.2019.0519

7. Yang, D., H. Lin, and X. Huang, "Dual broadband metamaterial polarization converter in microwave regime," Progress In Electromagnetics Research Letters, Vol. 61, 71-76, 2016.
doi:10.2528/PIERL16033004

8. Hao, J., Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, "Manipulating electromagnetic wave polarizations by anisotropic metamaterials," Physical Review Letters, 063908 –, 10, , Vol. 99, 1-4, 2007.

9. Meissner, T. and F. J. Wentz, "Polarization rotation and the third Stokes parameter: The effects of spacecraft attitude and Faraday rotation," IEEE Transactions on Geoscience and Remote Sensing, Vol. 44, No. 3, 506-515, 2006.
doi:10.1109/TGRS.2005.858413

10. Baena, J. D., A. P. Slobozhanyuk, J. D. Ortiz, and P. A. Belov, "Linear to circular polarization converters based on self-complementary metasurfaces," IEEE 2014 8th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics, 43-45, Denmark, Europe, Aug.

11. Khan, M. I., Q. Fraz, and F. A. Tahir, "Ultra-wideband cross polarization conversion metasurface insensitive to incidence angle," Journal of Applied Physics, Vol. 121, No. 4, 045103, 2017.
doi:10.1063/1.4974849

12. Zhang, F., G. M. Yang, and Y. Q. Jin, "Microwave polarization converter with multilayer metasurface," IEEE 14th European Conference on Antennas and Propagation (EuCAP), 1-4, March 2020.

13. Khan, B., B. Kamal, S. Ullah, I. Khan, J. A. Shah, and J. Chen, "Design and experimental analysis of dual-band polarization converting metasurface for microwave applications," Scientific Reports, Vol. 10, No. 1, 1-13, 2020.
doi:10.1038/s41598-019-56847-4

14. Xu, P., S. Y. Wang, and W. Geyi, "A linear polarization converter with near unity efficiency in microwave regime," Journal of Applied Physics, Vol. 121, No. 14, 144502, 2017.
doi:10.1063/1.4979880

15. Mei, Z. L., X. M. Ma, C. Lu, and Y. D. Zhao, "High-efficiency and wide-bandwidth linear polarization converter based on double U-shaped metasurface," AIP Advances, Vol. 7, No. 12, 125323, 2017.
doi:10.1063/1.5003446

16. Zhang, J., L. Yang, L. Li, T. Zhang, H. Li, Q. Wang, Y. Hao, M. Lei, and K. Bi, "High-efficiency polarization conversion phase gradient metasurface for wideband anomalous reflection," Journal of Applied Physics, Vol. 122, No. 1, 014501, 2017.
doi:10.1063/1.4991505

17. Gao, X., X. Han, W. P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, "Ultrawideband and highefficiency linear polarization converter based on double V-shaped metasurface," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 8, 3522-3530, 2015.
doi:10.1109/TAP.2015.2434392

18. Khan, B., S. Ullah, and B. Kamal, "An extended split ring resonator type metasurface for microwave applications," IEEE 2019 16th International Bhurban Conference on Applied Sciences and Technology (IBCAST) , 1046-1049, Pakistan, Islamabad, Jan.

19. Lin, B., B. Wang, W. Meng, X. Da, W. Li, Y. Fang, and Z. Zhu, "Dual-band high-efficiency polarization converter using an anisotropic metasurface," Journal of Applied Physics, Vol. 119, No. 18, 183103, 2016.
doi:10.1063/1.4948957

20. Liu, D. Y., L. F. Yao, X. M. Zhai, M. H. Li, and J. F. Dong, "Diode-like asymmetric transmission of circularly polarized waves," Applied Physics A, Vol. 116, No. 1, 9-13, 2014.
doi:10.1007/s00339-014-8519-8

21. Cheng, Y., J. Fan, H. Luo, and F. Chen, "Dual-band and high-efficiency circular polarization convertor based on anisotropic metamaterial," IEEE Access, Vol. 8, 7615-7621, 2019.

22. Liu, X., J. Zhang, W. Li, R. Lu, L. Li, Z. Xu, and A. Zhang, "Three-band polarization converter based on reflective metasurface," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 924-927, 2016.

23. Khan, M. I., Z. Khalid, S. A. K. Tanoli, F. A. Tahir, and B. Hu, "Multiband linear and circular polarization converting anisotropic metasurface for wide incidence angles," Journal of Physics D: Applied Physics, Vol. 53, No. 9, 095005, 2019.
doi:10.1088/1361-6463/ab5736

24. Khan, M. I., Z. Khalid, and F. A. Tahir, "Linear and circular-polarization conversion in X-band using anisotropic metasurface," Scientific Reports, Vol. 9, No. 1, 1-11, 2019.

25. Zheng, Q., C. Guo, G. A. Vandenbosch, P. Yuan, and J. Ding, "Dual-broadband highly efficient reflective multi-polarisation converter based on multi-order plasmon resonant metasurface," IET Microwaves, Antennas & Propagation, Vol. 14, No. 9, 967-972, 2020.
doi:10.1049/iet-map.2019.0984

26. Dutta, R., D. Mitra, and J. Ghosh, "Dual-band multifunctional metasurface for absorption and polarization conversion," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 30, No. 7, 22200, 2020.
doi:10.1002/mmce.22200

27. Noishiki, T., R. Kuse, and T. Fukusako, "Wideband metasurface polarization converter with double-square-shaped patch elements," Progress In Electromagnetics Research C, Vol. 105, 47-58, 2020.
doi:10.2528/PIERC20031006