Vol. 96

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2021-02-17

A Compact Broadband Folded Dipole Antenna Element with Ball Grid Array Packaging for New 5G Application

By Xiubo Liu, Wei Zhang, Dongning Hao, and Yanyan Liu
Progress In Electromagnetics Research Letters, Vol. 96, 113-119, 2021
doi:10.2528/PIERL21010502

Abstract

A compact broadband folded dipole antenna element with a ball grid array packaging is proposed in this letter. The compact antenna element is fabricated on a low-cost FR4 substrate consisting of only one dielectric layer. The solder balls are mounted on the square ground metal plane of the antenna element to form the ball grid array (BGA) packaging, which allows the antenna element to be surface mounted with other surface-mount devices (SMDs). Furthermore, ball grid array packaging has great potential for minimizing the size of antenna elements. The dimension of the proposed antenna element is only 6 mm × 6 mm × 1.6 mm. Parameter analysis shows that the solder balls have little effect on antenna performance. The proposed folded dipole antenna element is fed by a 50 Ω grounded coplanar waveguide (GCPW) transmission line on the evaluation board. The antenna prototype has been designed, analyzed, and manufactured. Measured results of the prototype show that the -10 dB impedance bandwidth is 45.4 % (22.3-35.4 GHz), and the peak gain achieves 6.62 dBi at 35 GHz. The measurement results show that the proposed antenna element has great potential for the 5G millimeter wave application.

Citation


Xiubo Liu, Wei Zhang, Dongning Hao, and Yanyan Liu, "A Compact Broadband Folded Dipole Antenna Element with Ball Grid Array Packaging for New 5G Application," Progress In Electromagnetics Research Letters, Vol. 96, 113-119, 2021.
doi:10.2528/PIERL21010502
http://jpier.org/PIERL/pier.php?paper=21010502

References


    1. Pi, Z. and F. Khan, "An introduction to millimeter-wave mobile broadband systems," IEEE Communications Magazine, Vol. 49, No. 6, 101-107, 2011.
    doi:10.1109/MCOM.2011.5783993

    2. Wang, H., P. Zhang, J. Li, and X. You, "Radio propagation and wireless coverage of LSAA-based 5G millimeter-wave mobile communication systems," China Communications, Vol. 16, No. 5, 1-18, 2019.
    doi:10.23919/j.cc.2019.05.001

    3. Park, J.-S., J.-B. Ko, H.-K. Kwon, B.-S. Kang, B. Park, and D. Kim, "A tilted combined beam antenna for 5G communications using a 28-GHz band," IEEE Antennas Wirel. Propag. Lett., Vol. 15, 1685-1688, 2016.
    doi:10.1109/LAWP.2016.2523514

    4. Alkaraki, S., A. S. Andy, Y. Gao, K.-F. Tong, Z. Ying, R. Donnan, and C. Parini, "Compact and low-cost 3-D printed antennas metalized using spray-coating technology for 5G mm-wave communication systems," IEEE Antennas Wirel. Propag. Lett., Vol. 17, No. 11, 2051-2055, 2018.
    doi:10.1109/LAWP.2018.2848912

    5. Mak, K.-M., K.-K. So, H.-W. Lai, and K.-M. Luk, "A magnetoelectric dipole leaky-wave antenna for millimeter-wave application," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 12, 6395-6402, 2017.
    doi:10.1109/TAP.2017.2722868

    6. Lin, W., R. W. Ziolkowski, and T. C. Baum, "28 GHz compact omnidirectional circularly polarized antenna for device-to-device communications in the future 5G systems," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 12, 6904-6914, 2017.
    doi:10.1109/TAP.2017.2759899

    7. Ahmad, Z. and J. Hesselbarth, "High-efficiency wideband surface-mount elevated 3-D patch antenna for millimeter waves," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 573-576, 2017.
    doi:10.1109/LAWP.2017.2682962

    8. Hu, W., X. Liu, S. Gao, L. Wen, Q. Luo, P. Fei, Y. Yin, and Y. Liu, "Compact wideband folded dipole antenna with multi-resonant modes," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 11, 6789-6799, 2019.
    doi:10.1109/TAP.2019.2925188

    9. Wang, Z., J. Wu, Y. Yin, and X. Liu, "A broadband dual-element folded dipole antenna with a reflector," IEEE Antennas Wirel. Propag. Lett., Vol. 13, 750-753, 2014.
    doi:10.1109/LAWP.2014.2315836

    10. Qu, S., C. Chan, and Q. Xue, "Ultrawideband composite cavity-backed folded sectorial bowtie antenna with stable pattern and high gain," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 8, 2478-2483, 2009.
    doi:10.1109/TAP.2009.2024585

    11. Low, Y. L., Y. Degani, K. V. Guinn, T. D. Dudderrar, J. A. Gregus, and R. C. Frye, "RF flipmodule BGA package," IEEE Transactions on Advanced Packaging, Vol. 22, No. 2, 111-115, 1999.
    doi:10.1109/6040.763180

    12. Heyen, J., T. von Kerssenbrock, A. Chernyakov, P. Heide, and A. F. Jacobvvv, "Novel LTCC/BGA modules for highly integrated millimeter-wave transceivers," IEEE Trans. Microwave Theory Techn., Vol. 51, No. 12, 2589-2596, 2003.
    doi:10.1109/TMTT.2003.819210

    13. Kangasvieri, T., J. Halme, J. Vahakangas, and M. Lahti, "Broadband BGA-via transitions for reliable RF/microwave LTCC-SiP module packaging," IEEE Microwave and Wireless Components Letters, Vol. 18, No. 1, 34-36, 2008.
    doi:10.1109/LMWC.2007.911986