Vol. 96
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2021-02-03
Conductor Backed Co-Planar Waveguide Inspired S-Band Filter Using Multi-Ring Resonators
By
Progress In Electromagnetics Research Letters, Vol. 96, 59-64, 2021
Abstract
A conductor backed CPW-based S-band filter using Multiple Ring Resonators (MRR) is presented. The resonator is coupled with the feed line through inter-digital coupling. Square resonator structure joined with inter-digital coupling on both sides on conductor plane and multiple ring resonators implemented with equal spacing at the ground plane forms a conductor backed CPW filter model. Adjusting the size and gap factor of MRR, the wide tuning ranges of desired frequencies are achieved. The filter has an outstanding bandwidth range from (2-4) GHz which fits for Satellite S-Band applications. The S-Band has low insertion loss (-0.95 dB), lower return loss (-35 dB), wide bandwidth (fractional bandwidth 66.6%) at the center frequency 3 GHz are obtained. The size of the filter performance characteristics are investigated and compared with measured results. The complete measurement of filter is (39×7.2×1.6) mm. The measured values of S11 and S21 are about -25 dB and -1.92 dB respectively.
Citation
Souprayen Oudaya Coumar, "Conductor Backed Co-Planar Waveguide Inspired S-Band Filter Using Multi-Ring Resonators," Progress In Electromagnetics Research Letters, Vol. 96, 59-64, 2021.
doi:10.2528/PIERL20123003
References

1. Hong, J. S. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, Wiley Publications, 2001.
doi:10.1002/0471221619

2. Liu, Y.-Q. and X.-Z. Ke, "A novel compact microstrip UWB band pass filter with improved outof-band rejection," Progress In Electromagnetics Research Letters, Vol. 59, 25-29, 2016.
doi:10.2528/PIERL16011401

3. Ludwig, R. and P. Bretchko, RF Circuit Design Theory and Applications, Prentice-Hall Publications, 2000.

4. Chu, P., W. Hong, K.-L. Zheng, W.-W. Yang, F. Xu, and K. Wu, "Balanced hybrid SIW-CPW band pass filter," Progress In Electromagnetic Research Letters, Vol. 53, No. 25, 1653-1655, 2017.

5. Guo, Z. and T. Yang, "Novel compact ultra-wideband band pass filter based on via less vertical CPW/microstrip transitions," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 18, 1258-1260, 2017.

6. He, Z. S., C. J. You, S. Leng, X. Li, and Y.-M. Huang, "Compact band pass filter with high selectivity using quarter-mode substrate integrated waveguide and coplanar waveguide," IEEE Microwave and Wireless Component Letters, Vol. 27, No. 9, 809-811, 2017.
doi:10.1109/LMWC.2017.2734845

7. Souprayen, O. C., "Miniaturized DGS based multi-band pass filters for satellite applications," Journal of Ambient Intelligence and Humanized Computing, Springer, 2021.

8. Zhong, Y.-P., Y. Xiong, and J. Huang, "Design of independently tunable dual-band filter with high selectivity and compact size using multipath propagation concept," Progress In Electromagnetic Research Letters, Vol. 95, 99-105, 2021.
doi:10.2528/PIERL20102703

9. Li, S., et al. "A new dual-band single-ended-to-balanced filtering power divider," International Journal of RF and Microwave Computer Aided Engineering, 2020.

10. Noura, A., M. Benaissa, M. Abri, H. Badaoui, T.-H. Vuong, and J. Tao, "Miniaturized half-mode SIW band-pass filter design integrating dumbbell DGS cells," Microwave and Optical Technology Letters, Vol. 61, No. 6, 1473-1477, 2019.
doi:10.1002/mop.31779

11. Souprayen, O. C. and S. Tamilselvan, "Miniaturized conductor backed CPW high pass filter for C-band satellite applications," Microwave and Optical Technology Letters (MoTL), Vol. 61, No. 6, 1478-1481, 2019.
doi:10.1002/mop.31844

12. Souprayen, O. C. and S. Tamilselvan, "Development of open stub loaded square resonator based dual band filter with a notch band to reject 802.11a," Journal of Materials Today, Vol. 11, No. 3, 1144-1151, 2019.

13. Souprayen, O. C. and S. Tamilselvan, "Compact ultra-wideband BPF based on square resonator using inter-digital coupling," Proceedings of IEEE International Conference on Circuits, Controls and Communications (CCUBE) , 218-221, Bengaluru, India, 2017.

14. Souprayen, O. C. and S. Tamilselvan, "Fabrication design of axially rotated square resonator based compact ultra-wideband BPF using tight coupling," Journal of Computational and Theoretical Nano Science, Vol. 15, No. 5, 1695-1699, 2018.
doi:10.1166/jctn.2018.7363

15. Xiao, J.-K., M. Zhu, J.-G. Ma, and J.-S. Hong, "Conductor-backed CPW band pass filters with electromagnetic couplings," IEEE Microwave and Wireless Components Letters, Vol. 26, No. 6, 401-403, 2016.
doi:10.1109/LMWC.2016.2562641

16. Gholipour, V., S. M. M. Moshiri, A. Alighanbari, and A. Yahaghi, "Highly selective wideband band pass filter using combined microstrip/coplanar waveguide structure," IET Microwaves, Antennas & Propagation, Vol. 52, No. 13, 1145-1147, 2016.

17. Shaman, H. N., "New S-band Band Pass Filter (BPF) with wideband pass band for wireless communication systems," IEEE Microwave and Wireless Components Letters, Vol. 22, No. 5, 242-244, 2012.
doi:10.1109/LMWC.2012.2190269

18. Mondal, P., A. Ghosh, and S. K. Parui, "Design of coplanar waveguide band-pass filter for S-band application," The Journal of Engineering, Vol. 2015, No. 3, 111-114, 2015.
doi:10.1049/joe.2014.0347