Vol. 96
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2021-01-21
An Independently Reconfigurable Upper and Lower Band Edge of Yagi Uda Antenna
By
Progress In Electromagnetics Research Letters, Vol. 96, 1-6, 2021
Abstract
In this letter, a novel design of independently reconfigurable upper and lower bands of a Yagi-Uda antenna is presented. The reconfiguration approach used in this antenna is based on keeping either the upper or lower band edge fixed with gradually increasing the bandwidth to the lower or upper ones. In this system, PIN diodes are used to control the length of the resonator and the slot-line of Yagi-Uda antenna to achieve upper and lower bandwidths limit reconfigurability. An antenna prototype was fabricated and tested in order to validate the design approach of the bandwidth reconfiguration. The proposed antenna has several different modes of operation with capability of tuning the fractional bandwidth (FBW) from 7% to 33% and 18% to 72% when using resonator and slot-line, respectively. This antenna can be a good candidate for cognitive radio applications that need adjusting the frequency bandwidth.
Citation
Mohamed Lamine Seddiki, Mourad Nedil, Saifeddine Hadji, and Farid Ghanem, "An Independently Reconfigurable Upper and Lower Band Edge of Yagi Uda Antenna," Progress In Electromagnetics Research Letters, Vol. 96, 1-6, 2021.
doi:10.2528/PIERL20102801
References

1. Mansoul, A. and M. L. Seddiki, "Multiband reconfigurable Bowtie slot antenna using switchable slot extensions for WiFi, WiMAX, and WLAN applications," Microw. Opt. Technol. Lett., Vol. 60, 413-418, 2018.
doi:10.1002/mop.30981

2. Seddiki, M. L., M. Nedil, F. Ghanem, and T. A. Denidni, "Frequency reconfigurable quasi-Yagi antenna using variable-length transmission line resonator," 2016 16th Mediterranean Microwave Symposium (MMS), Abu Dhabi, 2016.

3. Chen, S., Q. Chu, and N. Shinohara, "A bandwidth reconfigurable planar antenna for WLAN/WiMAX applications," 2016 Asia-Pacific Microwave Conference (APMC), New Delhi,2016.

4. Seddiki, M. L., M. Nedil, and F. Ghanem, "A novel wide, dual- and triple-band frequency reconfigurable butler matrix based on transmission line resonators," IEEE Access, Vol. 7, 1840-1847, 2019.
doi:10.1109/ACCESS.2018.2886203

5. Mansoul, A., F. Ghanem, M. R. Hamid, and M. Trabelsi, "A selective frequency-reconfigurable antenna for cognitive radio applications," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 515-518, 2014.
doi:10.1109/LAWP.2014.2311114

6. Bi, X., T. Cheng, P. Cheong, S. Ho, and K. Tam, "Design of dual-band bandpass filters with fixed and reconfigurable bandwidths based on terminated cross-shaped resonators," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 66, No. 3, 317-321, 2019.
doi:10.1109/TCSII.2018.2848667

7. Zhu, C., J. Xu, W. Kang, and W. Wu, "Microstrip multifunctional reconfigurable wideband filtering power divider with tunable center frequency, bandwidth, and power division," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 6, 2800-2813, 2018.
doi:10.1109/TMTT.2018.2811799

8. Mansoul, A., F. Ghanem, M. R. Hamid, E. Salonen, and M. Berg, "Bandwidth reconfigurable antenna with a fixed lower and a variable upper limit," IET Microwaves, Antennas & Propagation, Vol. 10, No. 15, 1725-1733, December 2016.
doi:10.1049/iet-map.2016.0286

9. Mansoul, A. and F. Ghanem, "Frequency reconfigurable antenna for cognitive radios with sequential UWB mode of perception and multiband mode of operation," International Journal of Microwave and Wireless Technologies, Vol. 10, No. 9, 1096-1102, 2018.
doi:10.1017/S1759078718001150