Vol. 95

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2020-12-28

A Simple Matrix Approach for Computing the Equivalent Resistance and Unknown Components in Resistor Networks

By Aris Alexopoulos
Progress In Electromagnetics Research Letters, Vol. 95, 125-134, 2021
doi:10.2528/PIERL20102101

Abstract

A method is presented for computing the equivalent resistance and the unknown components of simple series and parallel resistor networks. The approach consists in taking the product of a simple 2×2 matrix (N-1) times, where N is the total number of components in the network. The matrix approach originates from the study of continued fractions. Numerical computations only require an algorithm that handles matrix multiplication.

Citation


Aris Alexopoulos, "A Simple Matrix Approach for Computing the Equivalent Resistance and Unknown Components in Resistor Networks," Progress In Electromagnetics Research Letters, Vol. 95, 125-134, 2021.
doi:10.2528/PIERL20102101
http://jpier.org/PIERL/pier.php?paper=20102101

References


    1. Saggese, A. and R. De Luca, "A fractal-like resistive network," Eur. J. Phys., 065006, 2014.
    doi:10.1088/0143-0807/35/6/065006

    2. Mungan, C. E. and T. C. Lipscombe, "Babylonian resistor networks," Eur. J. Phys., 531-537, 2012.
    doi:10.1088/0143-0807/33/3/531

    3. Fry, T. C., "The use of continued fractions in the design of electrical networks," Elec. Net., 463-498, 1929.

    4. Kagan, M., "On equivalent resistance of electrical circuits," Am. J. Phys., Vol. 83, 53-63, 2015.
    doi:10.1119/1.4900918

    5. Cserti, J., "Application of the lattice Greens function for calculating the resistance of an infinite network of resistors," Am. J. Phys., Vol. 68, 896-906, 2000.
    doi:10.1119/1.1285881

    6. De Carlo, R. and P.-M. Lin, Linear Circuit Analysis: Time Domain, Phasor, and Laplace Transform Approaches, Oxford University Press, USA, 2001.

    7. Baak, D. A. V., "Variational alternatives to Kirchhov's loop theorem in dc circuits," Am. J. Phys., Vol. 67, 36-44, 1999.
    doi:10.1119/1.19188

    8. Kreyszig , E., Advanced Engineering Mathematics, 5th Ed., Wiley & Sons, 1983.

    9. Alexopoulos, A., "Binary circular inclusions in an effective medium approximation," Phys. Lett. A, 385-392, 2005.
    doi:10.1016/j.physleta.2005.02.046

    10. Alexopoulos, A., "Quantum scattering via the discretisation of Schrodinger's equation," Phys. Lett. A, Vol. 363, 66-70, 2007.
    doi:10.1016/j.physleta.2006.10.099

    11. Carmichael, R. D., The Theory of Numbers, and Diophantine Analysis, Dover, New York, 1959 .