Vol. 94
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-10-24
Miniaturized Twelve-Stubbed Microstrip Balun with Twelfth Higher Order Harmonic Suppression and Improved Bandwidths
By
Progress In Electromagnetics Research Letters, Vol. 94, 57-65, 2020
Abstract
The design of a compact stubbed microstrip balun with very wide range higher order harmonic suppression, is presented based on multiple open stub units, for which advantages are twofold, compared to single and double open-stub based designs. First, the high degree of size and harmonic reduction is achieved within the realizable impedance values. Second, the achieved bandwidths are fairly large (close to those of conventional balun) for a given set of electrical lengths. Unlike other methods, here, predetermined bandwidth analysis is provided for various levels of size and harmonic reduction. A prototype balun, having 75% size reduction and simultaneous wide higher order harmonic suppression extended up to 12f0, while maintaining good input matching, amplitude and phase balance bandwidths, is fabricated for validation.
Citation
Vuppuloori Ravi Reddy, Vamsi Krishna Velidi, and Bhima Prabhakara Rao, "Miniaturized Twelve-Stubbed Microstrip Balun with Twelfth Higher Order Harmonic Suppression and Improved Bandwidths," Progress In Electromagnetics Research Letters, Vol. 94, 57-65, 2020.
doi:10.2528/PIERL20080305
References

1. Sturdivant, R., "Balun designs for wireless, mixers, amplifiers and antennas," Applied Microwave & Wireless, Vol. 5, No. 3, 34-44, 1993.

2. Lin, C. H., C. H. Wu, G. T. Zhou, and T. G. Ma, "General compensation method for a Marchand balun with an arbitrary connecting segment between the balance ports," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 8, 2821-2830, 2013.
doi:10.1109/TMTT.2013.2268057

3. Bemani, M., S. Nikmehr, and H. Takfallah, "Dual-band microstrip-to-coplanar stripline Wilkinson balun using composite right- and left-handed transmission lines and its application in feeding dual-band bow-tie antenna," IET Microwaves, Antennas & Propagation, Vol. 8, No. 7, 532-540, 2014.
doi:10.1049/iet-map.2013.0532

4. Zhang, H., Y. Peng, and H. Xin, "A tapped stepped-impedance balun with dual-band operations," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 119-122, 2008.
doi:10.1109/LAWP.2008.921315

5. Barik, R. K., K. V. P. Kumar, and S. S. Karthikeyan, "Design of a dual-band microstrip branchline balun using T-shaped coupled lines," Wiley Microwave and Optical Technology Letters, Vol. 59, No. 5, May 2017.

6. Li, J. L. and S. W. Qu, "Miniaturized branch-line balun with bandwidth enhancement," Electronics Letters, Vol. 43, No. 17, 931-932, 2007.
doi:10.1049/el:20071074

7. Kim, P., G. Chaudhary, and Y. Jeong, "Analysis and design of a branch-line balun with high-isolation wideband characteristics," Wiley Microwave and Optical Technology Letters, Vol. 57, No. 5, May 2015.

8. Park, M.-J. and B. Lee, "Stubbed branch line balun," IEEE Microwave Wireless Components Letters, Vol. 17, 169-171, Mar. 2007.
doi:10.1109/LMWC.2006.890445

9. Velidi, V. K., A. Pal, and S. Sanyal, "Harmonics and size reduced microstrip branch line baluns using shunt open stubs," International Journal of RF and Microwave Computer-Aided Engg., Vol. 21, No. 2, 199-205, Mar. 2011.
doi:10.1002/mmce.20505

10. Velidi, V. K. and S. Sanyal, "Wide range suppressed harmonic response compact microstrip balun," International Journal of Electronics and Communications, Vol. 66, 45-48, 2012.
doi:10.1016/j.aeue.2011.04.012

11. Kumari, A., P. Bhowmik, and T. Moyra, "Design and validation of miniaturize rat race coupler based microstrip balun," International Journal of Electronics and Communications, Aug. 2018.