Vol. 92
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-06-08
A Design of Crossed Exponentially Tapered Slot Antenna with Multi-Resonance Function for 3G/4G/5G Applications
By
Progress In Electromagnetics Research Letters, Vol. 92, 1-8, 2020
Abstract
In this research work, a planar crossed exponentially tapered slot antenna with a multi-resonance function is introduced. The presented antenna design is ascertained on a low-cost Rogers 5870 dielectric with a circular schematic. The antenna is designed to support several frequency spectrums of the current and future wireless communications. The configuration of the design contains a pair of crossed exponentially tapered slots intersected by a star-shaped slot in the back layer and a bowtie-shaped radiation stub with a discrete feeding point extended among the stub parts. The crossed exponential slots exhibit a wide impedance, and the star slot generates an extra resonance at the upper frequencies. For S11 ≤ -6, the antenna provides a wide operation band of 1.7 to 5.9 GHz supporting several frequency bands of 3G, 4G, and 5G communication. The fundamental characteristics of the proposed slot radiator are studied, and good performances have been achieved.
Citation
Naser Ojaroudi Parchin, Haleh Jahanbakhsh Basherlou, and Raed A. Abd-Alhameed, "A Design of Crossed Exponentially Tapered Slot Antenna with Multi-Resonance Function for 3G/4G/5G Applications," Progress In Electromagnetics Research Letters, Vol. 92, 1-8, 2020.
doi:10.2528/PIERL20042306
References

1. Kumar, G. and K. P. Ray, Broadband Microstrip Antennas, Artech House Inc., Norwood, MA, 2003.

2. Salonen, P., et al. "A small planar inverted-F antenna for wearable applications," IEEE International Symposium on Wearable Computers, 96-100, 1999.

3. Ojaroudi, M., et al. "Dual band-notch small square monopole antenna with enhanced bandwidth characteristics for UWB applications," ACES Journal, Vol. 25, 420-426, 2012.

4. Al-Yasir, Y. I. A., et al. "A new polarization-reconfigurable antenna for 5G applications," Electronics, Vol. 7, 293, 2018.
doi:10.3390/electronics7110293

5. Ojaroudi, N. and N. Ghadimi, "Dual-band CPW-fed slot antenna for LTE and WiBro applications," Microw. Opt. Technol. Lett., Vol. 56, 1013-1015, 2014.
doi:10.1002/mop.28254

6. Ojaroudiparchin, N., M. Shen, and G. F. Pedersen, "Investigation on the performance of low-profile insensitive antenna with improved radiation characteristics for the future 5G applications," Microw. Opt. Technol. Lett., Vol. 58, 2148-2158, 2016.
doi:10.1002/mop.29994

7. Parchin, N. O., et al. "Recent developments of reconfigurable antennas for current and future wireless communication systems," Electronics, Vol. 8, 128, 2019.
doi:10.3390/electronics8020128

8. Ojaroudi, N., et al. "An omnidirectional PIFA for downlink and uplink satellite applications in C-band," Microwave and Optical Technology Letters, Vol. 56, 2684-2686, 2014.
doi:10.1002/mop.28672

9. Ojaroudi, N. and N. Ghadimi, "Design of CPW-fed slot antenna for MIMO system applications," Microw. Opt. Technol. Lett., Vol. 56, 1278-1281, 2014.
doi:10.1002/mop.28346

10. Ren, Z., S. Wu, and A. Zhao, "Triple band MIMO antenna system for 5G mobile terminals," 2019 International Workshop on Antenna Technology (iWAT), 163-165, Miami, FL, USA, 2019.

11. Ojaroudiparchin, N., M. Shen, and G. F. Pedersen, "8 × 8 planar phased array antenna with high efficiency and insensitivity properties for 5G mobile base stations," EuCAP 2016, 1-5, Davos, Switzerland, 2016.

12. Parchin, N. O. and R. A. Abd-Alhameed, "A compact Vivaldi antenna array for 5G channel sounding applications," EuCAP, London, UK, 2018.

13. Ojaroudi Parchin, N., H. J. Basherlou, and R. A. Abd-Alhameed, "Dual circularly polarized crescent-shaped slot antenna for 5G front-end systems," Progress In Electromagnetics Research Letters, Vol. 91, 41-48, 2020.

14. Ojaroudi, N., H. Ojaroudi, and N. Ghadimi, "Quadband planar inverted-F antenna (PIFA) for wireless communication systems," Progress In Electromagnetics Research Letters, Vol. 45, 51-56, 2014.
doi:10.2528/PIERL14012403

15. Hussain, R., et al. "Compact 4G MIMO antenna integrated with a 5G array for current and future mobile handsets," IET Microw. Antennas Propag., Vol. 11, 271-279, 2017.
doi:10.1049/iet-map.2016.0738

16. Parchin, N. O., et al. "A radiation-beam switchable antenna array for 5G smartphones," 2019 PhotonIcs & Electromagnetics Research Symposium --- Fall (PIERS --- FALL), 1769-1774, Xiamen, China, Dec. 17-20, 2019.

17. Parchin, N. O., et al. "Microwave/RF components for 5G front-end systems," Avid Science, 1-200, 2019.

18. Parchin, N. O., "Multi-band MIMO antenna design with user-impact investigation for 4G and 5G mobile terminals ," Sensors, Vol. 19, 456, 2019.
doi:10.3390/s19030456

19. Parchin, N. O., et al. "Dual-polarized multi-antenna system for massive MIMO cellular communications," International Journal of Information and Communication Engineering, Vol. 14, 140-144, 2020.

20. Gozalvez, J., "5G worldwide developments [mobile radio]," IEEE Veh. Technol. Mag., Vol. 12, 4-11, 2017.

21. Bonfante, A., et al. "5G massive MIMO architectures: self-backhauled small cells versus direct access," IEEE Transactions on Vehicular Technology, Vol. 68, 10003-10017, 2019.
doi:10.1109/TVT.2019.2937652

22. "5G in the Sub-6GHz spectrum bands,", [Online], Available: http://www.rcrwireless.com/20160815/fundamentals/5g-sub-6ghztag31-tag99.
doi:10.1109/TVT.2019.2937652

23. 5G NR (New Radio), Accessed: Dec. 12, 2018, [Online], Available: http://3gpp.org/.

24. Parchin, N. O., et al. "A substrate-insensitive antenna array with broad bandwidth and high efficiency for 5G mobile terminals," 2019 PhotonIcs & Electromagnetics Research Symposium --- Fall (PIERS --- FALL), 1764-1768, Xiamen, China, Dec. 17-20, 2019.

25. Parchin, N. O., et al. "High-performance Yagi-Uda antenna array for 28 GHz mobile communications," 23th Telecommunications Forum, TELFOR 2019, Belgrade, Serbia, Nov. 25-27, 2019.

26. Parchin, N. O., et al. "Eight-port MIMO antenna system for 2.6 GHz LTE cellular communications," Progress In Electromagnetics Research C, Vol. 99, 49-59, 2020.
doi:10.2528/PIERC19111704

27. Basherlou, H. J., et al. "MIMO monopole antenna design with improved isolation for 5G WiFi applications," International Journal of Electrical and Electronic Science, Vol. 7, 1-5, 2019.
doi:10.18178/ijeee.7.1.1-5

28. Parchin, N. O., et al. "Frequency reconfigurable antenna array with compact end-fire radiators for 4G/5G mobile handsets," IEEE 2nd 5G World Forum (5GWF), Dresden, Germany, 2019.

29. CST Microwave Studio, ver. 2018, CST, Framingham, MA, USA, 2018.

30. Costa, J. R. and C. A. Fernandes, "Broadband slot feed for integrated lens antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 6, 396-400, 2007.
doi:10.1109/LAWP.2007.900954

31. Costa, J. R. and C. A. Fernandes, "Crossed exponentially tapered slot antenna for UWB applications," 2008 IEEE Antennas and Propagation Society International Symposium, 1-4, San Diego, CA, 2008.

32. Valizade, A., et al. "CPW-fed small slot antenna with reconfigurable circular polarization and impedance bandwidth characteristics for DCS/WiMAX applications," Progress In Electromagnetics Research C, 65-72, 2015.
doi:10.2528/PIERC14122901

33. Ojaroudi, N., et al. "Enhanced bandwidth of small square monopole antenna by using inverted U-shaped slot and conductor-backed plane," Applied Computational Electromagnetics Society (ACES), Vol. 27, 685-690, 2012.

34. Valizade, A., et al. "Band-notch slot antenna with enhanced bandwidth by using Ω-shaped strips protruded inside rectangular slots for UWB applications," Appl. Comput. Electromagn. Soc. (ACES) J., Vol. 27, 816-822, 2012.

35. Costa, J. R., C. R. Medeiros, and C. A. Fernandes, "Performance of a Crossed Exponentially Tapered Slot Antenna for UWB Systems," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 5, 1345-1352, May 2009.

36. Jamesn, J. R. and P. S. Hall, Handbook of Microstrip Antennas, Peter Peregrinus Ltd., London, 1989.

37. Ojaroudi, N., "Circular microstrip antenna with dual band-stop performance for ultra-wideban systems," Microw. Opt. Technol. Lett., Vol. 56, 2095-2098, 2014.

38. Parchin, N. O., et al. "Reconfigurable phased array 5G smartphone antenna for cognitive cellular networks," 23th Telecommunications Forum, TELFOR 2019, Belgrade, Serbia, Nov. 25-27, 2019.

39. Parchin, N. O., et al. "UWB mm-wave antenna array with quasi omnidirectional beams for 5G handheld devices," IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB), Nanjing, China, 2016.

40. Ojaroudi, N., et al. "Compact ultra-wideband monopole antenna with enhanced bandwidt-hand dual band-stop properties," International Journal of RF and Microwave Computer-Aided Engineering, 346-357, 2014.

41. Parchin, N. O., et al. "MM-wave phased array Quasi-Yagi antenna for the upcoming 5G cellularcommunications," Applied Sciences, Vol. 9, 1-14, 2019.

42. Parchin, N. O., H. J. Basherlou, and R. A. Abd-Alhameed, "UWB microstrip-fed slot antenna with improved bandwidth and dual notched bands using protruded parasitic strips," Progress In Electromagnetics Research C, Vol. 101, 261-273, 2020.

43. Musavand, A., et al. "A compact UWB slot antenna with reconfigurable band-notched function for multimode applications," Applied Computational Electromagnetics Society (ACES) Journal, Vol. 13, No. 1, 975-980, 2016.

44. Parchin, N. O., "Low-profile air-filled antenna for next generation wireless systems," Wireless Personal Communications, Vol. 97, 3293-3300, 2017.

45. Mazloum, J., A. Ghorashi, M. Ojaroudi, and N. Ojaroudi, "Compact triple-band S-shaped monopole diversity antenna for MIMO applications," Appl. Comput. Electromagn. Soc. J., Vol. 30, 975-980, 2015.

46. Elfergani, I. T. E., A. S. Hussaini, J. Rodriguez, and R. Abd-Alhameed, Antenna Fundamentals for Legacy Mobile Applications and Beyond, 1-659, Springer, Switzerland, 2017.

47. Ojaroudi, N., "Design of microstrip antenna for 2.4/5.8 GHz RFID applications," German Microwave Conference, GeMic 2014, RWTH Aachen University, Germany, Mar. 10-12, 2014.

48. Siahkal-Mahalle, B. H., et al. "Enhanced bandwidth small square monopole antenna with band-notched functions for UWB wireless communications," Applied Computational Electromagnetics Society (ACES) Journal, 759-765, 2012.

49. Parchin, N. O., et al. "A closely spaced dual-band MIMO patch antenna with reduced mutual coupling for 4G/5G applications," Progress In Electromagnetics Research C, Vol. 101, 71-80, 2020.

50. Parchin, N. O., et al. "Design of multi-mode antenna array for use in next-generation mobile handsets," Sensors, Vol. 20, 2447, 2020.