Vol. 94
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-11-10
High Sideband Suppression Dual-Mode Filters Using New CPW Resonator
By
Progress In Electromagnetics Research Letters, Vol. 94, 125-131, 2020
Abstract
A novel class of dual-mode filters with improved high frequency sideband suppression response making use of coplanar waveguide (CPW) square loop resonator is presented. The resonator is placed on the bottom plane and inside the defected area of the ground. The resonant property of the CPW square loop resonator as well as the coupling property between two degenerate modes with different patch perturbation is studied in the paper. Two T-shaped orthogonal feed lines are arranged on the top plane, which not only provide proper excitation to the resonator, but also introduce an additional source-load coupling, so the proposed filter is found to have two transmission zeros at high frequency sideband and takes on asymmetric frequency response. Such a compact dual-mode CPW square loop resonator filter operating at 2.68 GHz is designed and fabricated.
Citation
Yuanbao Chen, Shuang Huang, Gang Xie, and Jia Chen, "High Sideband Suppression Dual-Mode Filters Using New CPW Resonator," Progress In Electromagnetics Research Letters, Vol. 94, 125-131, 2020.
doi:10.2528/PIERL20042203
References

1. Wolff, I., "Microstrip bandpass filter using degenerate modes of a microstrip ring resonator," Electronics Letters, Vol. 8, No. 12, 302-303, 1972.
doi:10.1049/el:19720223

2. Li, Y. J., Y. Liu, L. Y. Feng, X. Y. Liu, and D. Cheng, "Design of multi-band bandpass filters using short-circuited stub meander loop resonator," 2018 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 2018.

3. Gorur, A., "Description of coupling between degenerate modes of a dual-mode microstrip loop resonator using a novel perturbation arrangement and its dual-mode bandpass filter applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 2, 671-677, 2004.
doi:10.1109/TMTT.2003.822033

4. Ieu, W., D. Zhou, D. Zhang, and D. Lv, "Compact dual-mode dual-band HMSIW bandpass filters using source-load coupling with multiple transmission zeros," Electronics Letters, Vol. 55, No. 4, 210-212, 2019.
doi:10.1049/el.2018.7694

5. Liu, H., B. Ren, S. Hu, X. Guan, and P. Wen, "High-order dual-band superconducting bandpass filter with controllable bandwidths and multitransmission zeros," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, No. 10, 3813-3823, 2017.
doi:10.1109/TMTT.2017.2690295

6. Cassinese, A., M. Barra, and W. Ciccognani, "Miniaturized superconducting filter realized by using dual-mode and stepped resonators," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 1, 650-654, 2004.
doi:10.1109/TMTT.2003.821250

7. Deng, J.-Y., M.-J. Li, D. Sun, L.-X. Guo, and X.-H. Ma, "Compact dual-band inverted-microstrip ridge gap waveguide bandpass filter," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 1, 650-654, 2020.

8. Altaf, A., C. Xi, W. Shahzad, U. Dilshad, and J. Miao, "Design of millimeter-wave microstrip BPF using dual-mode ring resonator and folded half-wavelength resonators," 2020 17th IBCAST, 2020.

9. Iqbal, A., J. J. Tiang, and C. K. Lee, "Dual-band half mode substrate integrated waveguide filter with independently tunable bands," IEEE Transactions on Circuits and Systems, Vol. 67, No. 2, 285-289, 2020.

10. Ma, P., B. Wei, J. Hong, B. Cao, X. Guo, and L. Jiang, "Design of dual-mode dual-band superconducting filters," IEEE Transactions on Applied Superconductivity, Vol. 27, No. 17, 1724-1732, 2017.

11. Cheng, Y., C. Mei, and L. Zhu, "Design of dual-mode band-pass filter with novel perturbation elements," Progress In Electromagnetics Research C, Vol. 96, 59-71, 2019.
doi:10.2528/PIERC19061708

12. Nosrati, A., M. Mohammad-Taheri, and M. Nosrati, "Gap-coupled dual-band evanescent-mode substrate integrated band-pass filter waveguide," Progress In Electromagnetics Research Letters, Vol. 89, 53-59, 2020.
doi:10.2528/PIERL19101302