Vol. 93
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-09-11
A Novel ZOR Antenna with a Capability to Change Polarization and Diversity
By
Progress In Electromagnetics Research Letters, Vol. 93, 73-80, 2020
Abstract
In this paper, a novel zeroth-order resonator (ZOR) antenna by exciting two asymmetric coplanar strips (ACS) is reported. In order to attain ZOR resonance, the antenna has resorted to two annular ring resonators (ARRs) which control antenna characteristics at 2.7 GHz. In this frequency, antenna treats such as a planar dipole antenna with omnidirectional patterns and linear polarization. The proposed antenna by utilizing two ports can change circular polarization diversity at the second band region. The proposed miniaturized antenna covering more than 80% bandwidth overall two bands and a more than -15 dB isolation between two input ports can be used in portable systems.
Citation
Saeid Karamzadeh, and Vahid Rafiei, "A Novel ZOR Antenna with a Capability to Change Polarization and Diversity," Progress In Electromagnetics Research Letters, Vol. 93, 73-80, 2020.
doi:10.2528/PIERL20041903
References

1. Kaiser, T., F. Zheng, and E. Dimitrov, "An overview of ultra-wideband systems with MIMO," Proc. IEEE, Vol. 97, 285-312, 2009.
doi:10.1109/JPROC.2008.2008784

2. Migliore, M. D., D. Pinchera, A. Massa, R. Azaro, F. Schettino, and L. Lizzi, "An investigation on UWB-MIMO communication systems based on an experimental channel characterization," IEEE Trans. Antennas Propag., Vol. 56, 3081-3083, 2008.
doi:10.1109/TAP.2008.928814

3. Coetzee, J. C. and Y. T. Yu, "Port decoupling for small arrays by means of an eigen mode feed network," IEEE Trans. Antennas Propag., Vol. 56, 1587-1593, 2008.
doi:10.1109/TAP.2008.923301

4. Mak, A. C. K., C. R. Rowell, and R. D. Murch, "Isolation enhancement between two closely packed antennas," IEEE Trans. Antennas Propag., Vol. 56, 3411-3419, 2008.
doi:10.1109/TAP.2008.2005460

5. Gallo, M., E. Antonino-Daviu, M. Ferrando-Bataller, M. Bozzetti, J. M. Molina-Garcia-Pardo, and L. Juan-Llacer, "A broadband pattern diversity annular slot antenna," IEEE Trans. Antennas Propag., Vol. 60, 1596-1600, 2012.
doi:10.1109/TAP.2011.2180314

6. Sanada, A., M. Kimura, I. Awai, C. Caloz, and T. Itoh, "A planar zeroth order resonator antenna using a left-handed transmission line," Proceedings of European Microwave Conference, 1341-1344, Amsterdam, 2004.

7. Volakis, J., C. C. Chen, and K. Fujimoto, Small Antennas: Miniaturization Techniques & Applications, McGraw-Hill, New York, NY, 2010.

8. Sharma, S. K., A. Gupta, and R. K. Chaudhary, "Compact CPW-fed CHSSR antenna for WLAN," 2014 IEEE International Microwave and RF Conference (IMaRC), 115-117, Banglore, 2014.

9. Antoniades, M. A. and G. V. Eleftheriades, "A folded-monopole model for electrically small NRI-TL metamaterial antennas," IEEE Antennas Wireless Propag. Lett., Vol. 7, 425-428, 2008.
doi:10.1109/LAWP.2008.2008773

10. Lai, A., K. M. K. H. Leong, and T. Itoh, "Infinite wavelength resonant antennas with monopolar radiation pattern based on periodic structures," IEEE Trans. Antennas Propag., Vol. 55, 868-876, 2007.
doi:10.1109/TAP.2007.891845

11. Jang, T., J. Choi, and S. Lim, "Compact coplanar waveguide (CPW) fed zeroth-order resonant antenna with extended bandwidth and high efficiency on vialess single layer," IEEE Trans. Antennas Propag., Vol. 59, 362-372, 2011.
doi:10.1109/TAP.2010.2096191

12. Niu, B.-J. and Q.-Y. Feng, "Bandwidth enhancement of asymmetric coplanar waveguide (ACPW)-fed antenna based on composite right/left-handed transmission line," IEEE Antennas Wireless Propag. Lett., Vol. 12, 563-566, 2013.
doi:10.1109/LAWP.2013.2260522

13. Zhu, J. and G. V. Eleftheriades, "A compact transmission-line metamaterial antenna with extended bandwidth," IEEE Antennas Wireless Propag. Lett., Vol. 8, 295-298, 2009.
doi:10.1109/LAWP.2009.2036870

14. Yang, S.-Y. and M. N. M. Kehn, "A bisected miniaturized ZOR antenna with increased bandwidth and radiation efficiency," IEEE Antennas Wireless Propag. Lett., Vol. 12, 159-162, 2013.
doi:10.1109/LAWP.2013.2243696

15. Chi, P.-L. and Y.-S. Shih, "Compact and bandwidth-enhanced zeroth-order resonant antenna," IEEE Antennas Wireless Propag. Lett., Vol. 14, 285-288, 2015.
doi:10.1109/LAWP.2014.2363087

16. Sharma, S. K., J. D. Mulchandani, D. Gupta, and R. K. Chaudhary, "Triple-band metamaterial-inspired antenna using FDTD technique for WLAN/WiMAX applications," Int. J. RF Microwave Comput.-Aid. Eng., Vol. 25, 688-695, 2015.
doi:10.1002/mmce.20907

17. Chen, X., C. Yin, and C. Guan, "Design and optimization of CPW-based composite right/left-handed transmission line," Int. J. RF Microwave Comput.-Aid. Eng., Vol. 21, 421-431, 2011.
doi:10.1002/mmce.20532

18. Gupta, A. and R. K. Chaudhary, "A compact dual band short ended metamaterial antenna with extended bandwidth," Int. J. RF Microwave Comput.-Aid. Eng., Vol. 26, 435-441, 2016.
doi:10.1002/mmce.20980

19. Ameen, M., A. Mishra, and R. K. Chaudhary, "Dual-layer and dual-polarized metamaterial inspired antenna using circular-complementary split ring resonator mushroom and metasurface for wireless applications," AEU --- International Journal of Electronics and Communications, Vol. 113, Article No. 152977, Elsevier, 2020.
doi:10.1016/j.aeue.2019.152977

20. Ameen, M. and R. K. Chaudhary, "Metamaterial CP antenna: A new technique for bandwidth-enhanced circularly polarized ZOR antenna based on ENG-TL backed coupled SSR with AMC metasurface," IEEE Antennas and Propagation Magazine, 2019, doi: https://ieeexplore.ieee.org/document/8948353.

21. Ameen, M., S. Kalraiya, and R. K. Chaudhary, "CPW-fed electrically small dual-polarized short-ended ZOR antenna using Ω-shaped capacitor and single-split ring resonator for GPS/WiMAX/WLAN/C-band applications," International Journal of RF and Microwave Computer-Aided Engineering (RFMiCAE), Wiley Journals, Vol. 29, No. 12, Article No. 21946, 2019.

22. Roshna, T. K., U. Deepak, V. R. Sajitha, and P. Mohanan, "An ACS-fed compact antenna for UWB applications," International Journal of Advances in Microwave Technology (IJAMT), Vol. 1, No. 1, May 2016.