Vol. 91
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-06-02
A Deadbeat Current Control Method for Switched Reluctance Motor
By
Progress In Electromagnetics Research Letters, Vol. 91, 123-128, 2020
Abstract
Aiming at high torque ripple of switched reluctance motor (SRM) caused by hysteresis tolerance control, this study proposes a new deadbeat control based on an SRM rotation coordinate system. The command current is easily calculated on account of the nonlinear deadbeat current controller. For the voltage control, the redefined voltage vectors and space voltage module are discussed to reduce the switching states. Experimental results exhibit that the proposed method can reduce the SRM torque ripple compared with direct torque control and direct instantaneous torque control. In addition, all the results are carried out on a three phase 12/8-poles SRM.
Citation
Qianni Li, Aide Xu, Lifang Zhou, and Chaoyi Shang, "A Deadbeat Current Control Method for Switched Reluctance Motor," Progress In Electromagnetics Research Letters, Vol. 91, 123-128, 2020.
doi:10.2528/PIERL20032103
References

1. Wang, Y., S. Tobayashi, and R. D. Lorenz, "A low-switching-frequency flux observer and torque model of deadbeat-direct torque and flux control on induction machine drives," IEEE Trans. Ind. Appl., Vol. 51, No. 3, 2255-2267, 2015.
doi:10.1109/TIA.2014.2365628

2. Dastjerdi, R. S., M. A. Abbasian, H. Saghafi, and M. H. Vafai, "Performance improvement of permanent-magnet synchronous motor using a new deadbeat-direct current controller," IEEE Trans. on Power Electron, Vol. 34, No. 4, 3530-13543, 2019.
doi:10.1109/TPEL.2018.2836866

3. Bostanci, E., M. Moallem, A. Parsapour, and B. Fahimi, "Opportunities and challenges of switched reluctance motor drives for electric propulsion: A comparative study," IEEE Trans. Transport. Electrification, Vol. 3, No. 1, 58-75, 2017.
doi:10.1109/TTE.2017.2649883

4. Chiba, A., K. Kiyota, N. Hoshi, M. Takemoto, and S. Ogasawara, "Development of a rare-earth-free SR motor with high torque density for hybrid vehicles," IEEE Trans. Energy Conversion, Vol. 30, No. 1, 175-182, 2015.
doi:10.1109/TEC.2014.2343962

5. Nakao, N. and K. Akatsu, "Vector control specialized for switched reluctance motor drives," 2014 Int. Conf. on Elect. Mach., 943-949, 2014.

6. Kuai, S., H. Zhang, X. Xia, and K. Li, "Unipolar sinusoidal excited switched reluctance motor control based on voltage space vector," IET Electric Power Appl., Vol. 13, No. 5, 670-675, 2019.
doi:10.1049/iet-epa.2018.5636

7. Khan, Y. A. and V. Verma, "Novel speed estimation technique for vector-controlled switched reluctance motor drive," IET Electric Power Appl., Vol. 13, No. 8, 1193-1203, 2019.
doi:10.1049/iet-epa.2018.5572

8. Shinohara, A., Y. Inoue, S. Morimoto, and M. Sanada, "Maximum torque per ampere control in stator flux linkage synchronous frame for DTC-based PMSM drives without using q-axis inductance," IEEE Trans. Ind. Appl., Vol. 53, No. 4, 3663-3671, 2017.
doi:10.1109/TIA.2017.2686800

9. Inderka, R. B. and R. W. A. A. De Doncker, "DITC-direct instantaneous torque control of switched reluctance drives ," IEEE Trans. Ind. Appl., Vol. 39, No. 4, 1046-1051, 2003.
doi:10.1109/TIA.2003.814578