Vol. 92
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-06-17
High-Power Wideband Elliptical-Grooved Over -Mode Circular Waveguide Polarizer
By
Progress In Electromagnetics Research Letters, Vol. 92, 47-54, 2020
Abstract
The available polarizers either cannot afford gigawatt-class high-power microwave applications or are large in length. In this letter, a novel grooved polarizer is proposed. The grooves are proposed to be created in an over-mode circular waveguide to improve the power capacity and bandwidth. Moreover, the symmetric elliptical grooves are adopted to suppress high-order modes and realize the desired phase difference. An X-band polarizer prototype is designed and manufactured with length of 91 mm. Simulated results show that the power capacity of the polarizer is more than 1.5 GW. Measured results in accordance with simulations show that the axial ratio is less than 3 dB from 8.6 to 12.2 GHz, with relative bandwidth of 34.6%. The measured return losses are better than -12.7 dB in the same frequency range.
Citation
Gexing Kong, Xianqiang Li, Qingfeng Wang, and Jianqiong Zhang, "High-Power Wideband Elliptical-Grooved Over -Mode Circular Waveguide Polarizer," Progress In Electromagnetics Research Letters, Vol. 92, 47-54, 2020.
doi:10.2528/PIERL20030101
References

1. Rahmat-Smaii, Y., D. W. Duan, D. V. Giri, and L. F. Libelo, "Canonical examples of reflector antennas for high-power microwave applications," IEEE Trans. Electromag. Compat., Vol. 34, 197-205, 1992.
doi:10.1109/15.155830

2. Huang, J. and J. A. Encinar, Reflectarray Antennas, 2nd Ed., Wiley, Hoboken, NJ, USA, 2007.
doi:10.1002/9780470178775

3. Subbarao, B. and V. F. Fusco, "Compact coaxial-fed CP polarizer," IEEE Antennas and Wirel. Propag. Lett., Vol. 3, 145-147, 2004.
doi:10.1109/LAWP.2004.831084

4. Bertin, G., B. Piovano, L. Accatino, and M. Mongiardo, "Full-wave design and optimization of circular waveguide polarizers with elliptical irises," IEEE Trans. Microwave Theory Tech., Vol. 50, 1077-1083, 2002.
doi:10.1109/22.993409

5. Hung, P. H., W. Y. Chiang, and Y. C. Hsieh, "High performance and high power circularly polarized horn antenna for K-band microwave processing systems," Review of Scientific Instruments, Vol. 90, No. 1, 014707, 2019.
doi:10.1063/1.5045632

6. Kim, I., J. M. Kovitz, and Y. Rahmat-Samii, "Enhancing the power capabilities of the stepped septum using an optimized smooth sigmoid profile," IEEE Antennas Propag. M., Vol. 56, No. 5, 16-42, 2014.
doi:10.1109/MAP.2014.6971913

7. Wang, S. W., C. H. Chien, C. L. Wang, and R. B. Wu, "A circular polarizer designed with a dielectric septum loading," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 7, 1719-1723, 2004.
doi:10.1109/TMTT.2004.830487

8. Zhang, L., C. R. Donaldson, and W. He, "Design and measurement of a polarization convertor based on a truncated circular waveguide," J. Phys. D: Appl. Phys., Vol. 45, 345103, 2012.
doi:10.1088/0022-3727/45/34/345103

9. Chang, C., S. Church, S. G. Tantawi, P. Voll, M. Sieth, and K. Devaraj, "Theory and experiment of a compact waveguide dual circular polarizer," Progress In Electromagnetics Research, Vol. 131, 211-225, 2012.
doi:10.2528/PIER12072601

10. Yoneda, N., M. Miyazaki, H. Matsumura, and M. Yamato, "A design of novel grooved circular waveguide polarizers," IEEE Trans. Microwave Theory Tech., Vol. 48, 2446-2452, 2000.
doi:10.1109/22.898996

11. Yoneda, N., M. Miyazaki, T. Horie, and H. Satou, "Mono-grooved circular waveguide polarizers," IEEE MTT-S Int. Microwave Symp. Dig., Vol. 2, 821-824, Seattle, WA, USA, 2002.

12. Shi, X. B., "Design for Ka-band couple circular polarization feed being possessed of receive and transmit,", Graduate School of Xi’an University of Technology, Xi’an, 2010.