Vol. 90
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-04-15
Design of Compact Electronically-Tuned Bandpass Filter with Sharp Rejection Skirt Using the Trans-Directional Coupled Line
By
Progress In Electromagnetics Research Letters, Vol. 90, 127-133, 2020
Abstract
A compact frequency-tuned bandpass filter (BPF) with sharp rejection characteristic is presented. It is composed of a trans-directional (TRD) coupled line and two short-circuited stubs. By changing the capacitor values of the coupled line and the electrical lengths of the short-circuited stubs, a frequency-tuned BPF with sharp rejection is obtained. For verification, a prototype tuned from 1.0 GHz to 1.6 GHz (46.2%) is designed and fabricated. The measured results show that the proposed structure exhibits the return loss of more than 17 dB, the insertion loss of 1.4 dB, and the 3-dB fractional bandwidth (BW) of 43.2-50%. Sharp rejections are also obtained, agreeing well with the simulation results.
Citation
Xiaojian Guo, Shao-Jun Fang, Hongmei Liu, and Zhongbao Wang, "Design of Compact Electronically-Tuned Bandpass Filter with Sharp Rejection Skirt Using the Trans-Directional Coupled Line," Progress In Electromagnetics Research Letters, Vol. 90, 127-133, 2020.
doi:10.2528/PIERL20020704
References

1. Ge, C. and X. Zhu, "Highly-selective tunable bandpass filter with two-path mixed coupling," IEEE Microw. Wireless Compon. Lett., Vol. 24, No. 7, 451-453, Jul. 2014.
doi:10.1109/LMWC.2014.2316218

2. Yang, T. and G. M. Rebeiz, "Tunable 1.25–2.1-GHz 4-pole bandpass filter with intrinsic transmission zero tuning," IEEE Trans. Microw. Theory Techn., Vol. 63, No. 5, 1569-1578, May 2015.
doi:10.1109/TMTT.2015.2409061

3. Tsai, H., T. Huang, and R. Wu, "Varactor-tuned compact dual-mode tunable filter with constant passband characteristics," IEEE Trans. Compon., Packag., Manuf. Technol., Vol. 6, No. 9, 1399-1407, Sept. 2016.
doi:10.1109/TCPMT.2016.2599205

4. Zhang, S., Z. Chen, Q. Chu, and S. Member, "Compact tunable balanced bandpass filter with novel multi-mode resonator," IEEE Microw. Wireless Compon. Lett., Vol. 27, No. 1, 43-45, Jan. 2017.
doi:10.1109/LMWC.2016.2629965

5. Lin, F. and M. Rais-Zadeh, "Continuously tunable 0.55–1.9-GHz bandpass filter with a constant bandwidth using switchable varactor-tuned resonators," IEEE Trans. Microw. Theory Techn., Vol. 65, No. 3, 792-803, Mar. 2017.
doi:10.1109/TMTT.2016.2633270

6. Shie, C., J. Cheng, S. Chou, and Y. Chiang, "Transdirectional coupled-line couplers implemented by periodical shunt capacitors," IEEE Trans. Microw. Theory Techn., Vol. 57, No. 12, 2981-2988, Dec. 2009.
doi:10.1109/TMTT.2009.2034219

7. Liu, H. M., S. J. Fang, and Z. B. Wang, "Modified coupled line trans-directional coupler with arbitrary power divisions and its application to a 180 hybrid," IET Microw. Antennas Propag., Vol. 9, No. 7, 682-688, 2015.
doi:10.1049/iet-map.2014.0640

8. Data Sheet-SMV1265 Series Hyperabrupt Junction Tuning Varactors, Skyworks Solutions Inc., Woburn, MA, USA, 2011.

9. Data Sheet-SMV2020 Series Hyperabrupt Junction Tuning Varactors, Skyworks Solutions Inc., Woburn, MA, USA, 2011.