Vol. 90
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-02-27
A Compact Negative-Group-Delay Microstrip Bandpass Filter
By
Progress In Electromagnetics Research Letters, Vol. 90, 45-51, 2020
Abstract
In this paper, a compact negative-group-delay (NGD) microstrip bandpass filter is proposed. The NGD characteristic is achieved by coupling a resistor-loaded microstrip line to a square open-loop resonator. To improve the selectivity, the square open-loop resonator is loaded with an open-circuited stub for realizing two transmission zeros (TZs) in the upper stopband. To verify the proposed method, an NGD microstrip bandpass filter with a size of 0.58λg × 0.35λg is designed and fabricated. From the measured results, the NGD time of -1.08 ns at the center frequency of 1.995 GHz is obtained with the NGD bandwidth of 34 MHz (1.977-2.011 GHz), in which the insertion loss is less than 7.5 dB, and the return loss is greater than 20 dB. Furthermore, three TZs at 1.520, 2.495, and 2.735 GHz are achieved with good stopband attenuation.
Citation
Zhongbao Wang, Zheng Fu, Chengze Li, Shao-Jun Fang, and Hongmei Liu, "A Compact Negative-Group-Delay Microstrip Bandpass Filter," Progress In Electromagnetics Research Letters, Vol. 90, 45-51, 2020.
doi:10.2528/PIERL19122701
References

1. Liu, F. and M. Qun, "A new compact UWB bandpass filter with quad notched characteristics," Progress In Electromagnetics Research Letters, Vol. 88, 83-88, 2020.
doi:10.2528/PIERL19090505

2. Yang, G., Q. Liu, S. Liu, and Y. Chang, "A compact wideband filtering power divider," Progress In Electromagnetics Research Letters, Vol. 81, 71-76, 2019.

3. Du, R.-N., Z.-B. Weng, and C. Zhang, "A miniaturized filtering 3-dB branch-line hybrid coupler with wide suppression band," Progress In Electromagnetics Research Letters, Vol. 73, 83-89, 2018.
doi:10.2528/PIERL17111406

4. Ravelo, B., "Theory of coupled line coupler-based negative group delay microwave circuit," IEEE Trans. Microwave Theory Tech., Vol. 64, No. 11, 3604-3611, 2016.
doi:10.1109/TMTT.2016.2604316

5. Chaudhary, G. and Y. Jeong, "Negative group delay phenomenon analysis using finite unloaded quality factor resonators," Progress In Electromagnetics Research, Vol. 156, 55-62, 2016.
doi:10.2528/PIER16041111

6. Liu, G. and J. Xu, "Compact transmission-type negative group delay circuit with low attenuation," Electron. Lett., Vol. 53, No. 7, 476-478, 2017.
doi:10.1049/el.2017.0328

7. Wang, Z., Y. Cao, T. Shao, S. Fang, and Y. Liu, "A negative group delay microwave circuit based on signal interference techniques," IEEE Microwave Wireless Compon. Lett., Vol. 28, No. 4, 290-292, 2018.
doi:10.1109/LMWC.2018.2811254

8. Noto, H., K. Yamauchi, M. Nakayama, and Y. Isota, "Negative group delay circuit for feed-forward amplifier," IEEE MTT-S Int. Microwave Symp. Dig., 1103-1106, Honolulu, HI, USA, 2007.

9. Ahn, K. P., R. Ishikawa, and K. Honjo, "Group delay equalized UWB InGaP/GaAs HBT MMIC amplifier using negative group delay circuits," IEEE Trans. Microwave Theory Tech., Vol. 57, No. 9, 2139-2147, 2009.
doi:10.1109/TMTT.2009.2027082

10. Joeng, J., G. Chaudhary, and Y. Jeong, "Efficiency enhancement of cross cancellation power amplifier using negative group delay circuit," Microw. Opt. Technol. Lett., Vol. 61, No. 7, 1673-1677, 2019.
doi:10.1002/mop.31765

11. Mirzaei, H. and G. V. Eleftheriades, "Realizing non-Foster reactive elements using negative-group-delay networks," IEEE Trans. Microwave Theory Tech., Vol. 61, No. 12, 4322-4332, 2013.
doi:10.1109/TMTT.2013.2281967

12. Mirzaei, H. and G. V. Eleftheriades, "Arbitrary-angle squint-free beamforming in series-fed antenna arrays using non-foster elements synthesized by negative-group-delay networks," IEEE Trans. Antennas Propag., Vol. 63, No. 5, 1997-2010, 2015.
doi:10.1109/TAP.2015.2408364

13. Choi, H., Y. Jeong, C. D. Kim, and J. S. Kenney, "Efficiency enhancement of feedforward amplifiers by employing a negative group-delay circuit," IEEE Trans. Microwave Theory Tech., Vol. 58, No. 5, 1116-1125, 2010.
doi:10.1109/TMTT.2010.2045576

14. Choi, H., Y. Jeong, C. D. Kim, and J. S. Kenney, "Bandwidth enhancement of an analog feed-back amplifier by employing a negative group delay circuit," Progress In Electromagnetics Research, Vol. 105, 253-272, 2010.
doi:10.2528/PIER10041808

15. Chaudhary, G., Y. Jeong, and J. Lim, "Microstrip line negative group delay filters for microwave circuits," IEEE Trans. Microwave Theory Tech., Vol. 62, No. 2, 234-243, 2014.
doi:10.1109/TMTT.2013.2295555

16. Qiu, L., L. Wu, W. Yin, and J. Mao, "Absorptive bandstop filter with prescribed negative group delay and bandwidth," IEEE Microwave Wireless Compon. Lett., Vol. 27, No. 7, 639-641, 2017.
doi:10.1109/LMWC.2017.2711572