Vol. 90

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2020-03-09

Towards Embedded Radcom-Sensors in Wind Turbine Blades: Preliminary Numerical and Experimental Studies

By Jonas Simon, Jochen Moll, Viktor Krozer, Thomas Kurin, Fabian Lurz, Robert Weigel, Stefan Krause, Oliver Bagemiel, Andreas Nuber, and Vadim Issakov
Progress In Electromagnetics Research Letters, Vol. 90, 61-67, 2020
doi:10.2528/PIERL19121004

Abstract

This paper presents a numerical study on the application of radar and communication (RadCom) sensor nodes operating in the frequency band from 57-64 GHz. The sensor nodes are embedded in the laminate of wind turbine blades, enable a quality inspection directly after rotor blade manufacturing as well as a structural health monitoring (SHM) throughout the service life of the blade. Given by a lack of dielectric properties for typical rotor blade materials, we have performed experimental studies on material characterization including glass fibre composites, balsa wood, infusion glue, etc. This material database serves as input for wave propagation simulations in a full scale 3D rotor blade model. The analysis also includes a parametric study on path losses as well as an optimal sensor placement strategy.

Citation


Jonas Simon, Jochen Moll, Viktor Krozer, Thomas Kurin, Fabian Lurz, Robert Weigel, Stefan Krause, Oliver Bagemiel, Andreas Nuber, and Vadim Issakov, "Towards Embedded Radcom-Sensors in Wind Turbine Blades: Preliminary Numerical and Experimental Studies," Progress In Electromagnetics Research Letters, Vol. 90, 61-67, 2020.
doi:10.2528/PIERL19121004
http://jpier.org/PIERL/pier.php?paper=19121004

References


    1. Li, Z., A. Haigh, C. Soutis, A. Gibson, and P. Wang, "A review of microwave testing of glass fibre-reinforced polymer composites," Nondestructive Testing and Evaluation, 1-30, April 2019.

    2. Moll, J., J. Simon, M. M¨alzer, V. Krozer, D. Pozdniakov, R. Salman, M. D¨urr, M. Feulner, A. Nuber, and H. Friedmann, "Radar imaging system for in-service wind turbine blades inspections: Initial results from a field installation at a 2 MW wind turbine," Progress in Electromagnetic Research, Vol. 162, 51-60, 2018.
    doi:10.2528/PIER18021905

    3. Moll, J., P. Arnold, M. M¨alzer, V. Krozer, D. Pozdniakov, R. Salman, S. Rediske, M. Scholz, H. Friedmann, and A. Nuber, "Radar-based structural health monitoring of wind turbine blades: The case of damage detection," Structural Health Monitoring, Vol. 17, No. 4, 815-822, July 2018.
    doi:10.1177/1475921717721447

    4. Ochieng, F. X., C. M. Hancock, G. W. Roberts, and J. Le Kernec, "A review of ground-based radar as a noncontact sensor for structural health monitoring of in-field wind turbines blades," Wind Energy, July 2018.

    5. Moll, J., "Damage detection and localization in metallic structures based on jointed electromagnetic waveguides: A proof-of-principle study," Journal of Nondestructive Evaluation, Vol. 37, No. 4, December 2018.
    doi:10.1007/s10921-018-0524-y

    6. Moll, J., "Numerical and experimental analysis of defect detection in jointed electromagnetic waveguides," 13th European Conference on Antennas and Propagation, 1-4, 2019.

    7. Worden, K., C. R. Farrar, G. Manson, and G. Park, "The fundamental axioms of structural health monitoring," Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 463, No. 2082, 1639-1664, June 2007.
    doi:10.1098/rspa.2007.1834

    8. Wiesbeck, W. and L. Sit, "Radar 2020: The future of radar system," 2014 International Radar Conference (Radar), 1-6, October 2014.

    9. Ciuonzo, D., A. De Maio, G. Foglia, and M. Piezzo, "Intrapulse radarembedded communications via multiobjective optimization," IEEE Transactions on Aerospace and Electronic Systems, Vol. 51, No. 4, 2960-2974, October 2015.
    doi:10.1109/TAES.2015.140821

    10. Ciuonzo, D., A. De Maio, G. Foglia, and M. Piezzo, "Pareto-theory for enabling covert intrapulse radar-embedded communications," 2015 IEEE Radar Conference (RadarCon), 0292-0297, Arlington, VA, USA, May 2015.

    11. Brancaccio, A., G. D’Alterio, E. De Stefano, L. Di Guida, M. Feo, and S. Luce, "A free-space method for microwave characterization of materials in aerospace application," 2014 IEEE Metrology for Aerospace (MetroAeroSpace), 423-427, May 2014.
    doi:10.1109/MetroAeroSpace.2014.6865962

    12. Arslanagic, S., T. V. Hansen, N. A. Mortensen, A. H. Gregersen, O. Sigmund, R. W. Ziolkowski, and O. Breinbjerg, "A review of the scattering-parameter extraction method with clarification of ambiguity issues in relation to metamaterial homogenization," IEEE Antennas and Propagation Magazine, Vol. 55, No. 2, 91-106, April 2013.
    doi:10.1109/MAP.2013.6529320

    13. Lau, I., M. Frank, K. Shi, F. Lurz, A. Talai, R. Weigel, and A. Koelpin, "An accurate free space method for material characterization in w- band using material samples with two different thicknesses," 2018 48th European Microwave Conference (EuMC), 202-205, September 2018.
    doi:10.23919/EuMC.2018.8541437

    14. Moll, J., T. N. Kelly, D. Byrne, M. Sarafianou, V. Krozer, and I. Craddock, "Microwave radar imaging of heterogeneous breast tissue integrating A-priori information," International Journal of Biomedical Imaging, Article ID 943549, 10, 2014.