Vol. 89

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2020-01-22

A Broadband Microstrip-to-Waveguide End-Wall Probe Transition and its Application in Waveguide Termination

By Cong Tang, Xiaofeng Pan, Fei Cheng, and Xianqi Lin
Progress In Electromagnetics Research Letters, Vol. 89, 99-104, 2020
doi:10.2528/PIERL19110601

Abstract

A broadband microstrip-to-waveguide end-wall probe transition using a semicircular loop is proposed in this letter. The simulated 20-dB fractional bandwidth for this transition is 48.3% which could cover the whole Ka-band. Then, a compact broadband waveguide termination is developed by combination of this microstrip-to-waveguide transition and a 50 Ω microstrip termination. To reduce parasitic effects, the microstrip termination is grounded by a microstrip radial stub. The fabricated waveguide termination shows a compact size and has a return loss better than 16.6 dB from 26 to 40.8 GHz.

Citation


Cong Tang, Xiaofeng Pan, Fei Cheng, and Xianqi Lin, "A Broadband Microstrip-to-Waveguide End-Wall Probe Transition and its Application in Waveguide Termination," Progress In Electromagnetics Research Letters, Vol. 89, 99-104, 2020.
doi:10.2528/PIERL19110601
http://jpier.org/PIERL/pier.php?paper=19110601

References


    1. Pozar, D. M., Microwave Engineering, Wiley, New York, 2005.

    2. Hoover, J. C. and R. E. Tokheim, "Microstrip transmission-line transitions to dielectric-filled waveguide," IEEE Trans. Microw. Theory Tech., Vol. 15, No. 4, 273-274, Apr. 1967.
    doi:10.1109/TMTT.1967.1126446

    3. Oh, H. S. and K. W. Yeom, "A full Ku-band reduced-height waveguide-to-microstrip transition with a short transition length," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 9, 2456-2462, Sep. 2010.
    doi:10.1109/TMTT.2010.2058251

    4. Haseker, J. S. and M. Schneider, "90 degree microstrip to rectangular dielectric waveguide transition in the W-band," IEEE Microw. Wireless Compon. Lett., Vol. 26, No. 6, 416-418, Jun. 2016.
    doi:10.1109/LMWC.2016.2558640

    5. Aliakbarian, H., A. Enayati, G. A. E. Vandenbosch, and W. de Raedt, "Novel low-cost end-wall microstrip-to-waveguide splitter transition," Progress In Electromagnetics Research, Vol. 101, 75-96, 2010.
    doi:10.2528/PIER09081805

    6. Kaneda, N., Y. Qian, and T. Itoh, "A broadband microstrip-to-waveguide transition using quasi- Yagi antenna," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 12, 2562-2567, Dec. 1999.
    doi:10.1109/22.809007

    7. Huang, X. and K. L. Wu, "A broadband U-slot coupled microstrip-to-waveguide transition," IEEE Trans. Microw. Theory Tech., Vol. 60, No. 5, 1210-1217, May 2012.
    doi:10.1109/TMTT.2012.2187677

    8. Chuang, J. K., R. Y. Fang, and C. L. Wang, "Compact and broadband microstrip-to-waveguide transition using antisymmetric tapered probes," Electron. Lett., Vol. 48, No. 6, 332-333, Mar. 2012.
    doi:10.1049/el.2011.3673

    9. Fang, R. Y. and C. L. Wang, "Miniaturized microstrip-to-waveguide transition using capacitancecompensated broadside-coupled microstrip line," IEEE Trans. Compon. Packag. Manuf. Technol., Vol. 3, No. 9, 1588-1596, Sep. 2013.
    doi:10.1109/TCPMT.2013.2244644

    10. Jokanovic, B. and D. Markovic, "Wideband microstrip-to-waveguide transition using double-Y balun," Electron. Lett., Vol. 42, No. 18, 1043-1044, Aug. 2006.
    doi:10.1049/el:20061769

    11. Zhang, Y. C., J. A. Ruiz-Cruz, K. A. Zaki, and A. J. Piloto, "A waveguide to microstrip inline transition with very simple modular assembly," IEEE Microw. Wireless Compon. Lett., Vol. 20, No. 9, 480-482, Sep. 2010.
    doi:10.1109/LMWC.2010.2056358

    12. Risacher, C., V. Vassilev, A. Pavolotsky, and V. Belitsky, "Waveguide-to-microstrip transition with integrated bias-T," IEEE Microw. Wireless Compon. Lett., Vol. 13, No. 7, 262-264, Jul. 2003.
    doi:10.1109/LMWC.2003.815182

    13. Arbaoui, Y., et al., "Full 3-D printed microwave termination: A simple and low-cost solution," IEEE Trans. Microw. Theory Tech., Vol. 64, No. 1, 271-278, Jan. 2016.
    doi:10.1109/TMTT.2015.2504477

    14. Monge, F. J., J. Esteban, and J. Zapata, "Finite elements and evolution programs for the CAD of broadband rectangular-waveguide H-plane matched loads," Microw. Opt. Technol. Lett., Vol. 31, No. 6, 491-494, 2001.
    doi:10.1002/mop.10070

    15. Stander, T., P. W. van derWalt, and P. Meyer, "A comparison of simple low-power wedge-type X-band waveguide absorbing load implemen-tations," AFRICON 2007, 1-4, Windhoek, Namibia, Sep. 2007.

    16. Komarov, V. V., V. P. Meschanov, and N. F. Popova, "Short waveguide load for millimetre-wave applications," Electron. Lett., Vol. 52, No. 5, 378-379, 2016.
    doi:10.1049/el.2015.4214

    17. Li, J., G. Wen, Y. Huang, P. Wang, and Y. Sun, "Research of metamaterial absorbers and their rectangular waveguide matching terminal applications based on the electric resonators," Acta. Phys. Sin., Vol. 62, No. 8, 087801-1-087801-7, 2013.

    18. Vishay Intertechnology, "High frequency (up to 40 GHz) resistor, thin film surface mount chip,", http://www.vishay.com/doc?60093, Feb. 17, 2008.