Vol. 92
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-06-24
A CPW-Fed Triband Antenna for 2.4/3.5/5.5 GHz Applications
By
Progress In Electromagnetics Research Letters, Vol. 92, 75-83, 2020
Abstract
A novel and compact CPW fed triband antenna suitable to support WLAN and WiMAX communications in 2.4/3.5/5.5 GHz bands is reported. The 5.5 GHz band extends from 4.9 to 5.94 GHz. So the proposed antenna can support the use of 4.94-4.99 GHz band allotted for fixed and mobile service (except aeronautical mobile service) for use in support of public safety and 5.85-5.925 GHz band for Dedicated Short-Range Communications (DSRC) services in the Intelligent Transportation System (ITS) radio service. Metallic radiating stub extending from the feed is used to excite the resonance at 2.4 GHz. An open slot in the stub and a pair of open slots in ground plane are used to excite the other resonances. An arc shaped parasitic element is also included in the design for improved radiation performance. The proposed antenna geometry is developed on FR4 glass epoxy substrate with relative permittivity 3.8 and loss tangent 0.02. The geometry is developed and optimized using High Frequency Structure Simulator and experimentally validated the results. Performance comparison of the proposed antenna with similar antennas in literature is presented. Measured radiation patterns and gain are also included in this paper.
Citation
Chandramma Anil Kumar, Binu Paul, Manoj Mani, and Pezholil Mohanan, "A CPW-Fed Triband Antenna for 2.4/3.5/5.5 GHz Applications," Progress In Electromagnetics Research Letters, Vol. 92, 75-83, 2020.
doi:10.2528/PIERL19102803
References

1. Notice of Proposed Rulemaking and Order (Notice and Order) of FCC, released on November 15, 2002.

2. Amendment of Parts 2 and 90 of the Federal Communication Commission’s Rules to Allocate the 5.850–5.925 GHz Band to the Mobile Service for Dedicated Short Range Communications of Intelligent Transportation Services, released on June 11, 1998.

3. Kumar, A. and A. P. S. Pharwaha, "Triple band fractal antenna for radio navigation and fixed satellite services using dragon fly optimization," Adv. Electromagnetics, Vol. 8, No. 3, 43-49, June 2019.

4. Li, L., X. Zhang, X. Yin, and L. Zhou, "A compact triple-band printed monopole antenna for WLAN/WiMAX applications," IEEE Antennas Wirel. Propag. Lett., Vol. 15, 1853-1855, 2016.

5. Zhi, R., M. Han, J. Bai, W. Wu, and G. Liu, "Miniature multiband antenna for WLAN and X-band satellite communication applications," Progress In Electromagnetics Research Letters, Vol. 75, 13-18, 2018.

6. Wu, T., X.-W. Shi, P. Li, and H. Bai, "Triband microstrip fed monopole antenna with dual polarization characteristics for WLAN and WiMAX applications," Electron. Lett., Vol. 49, No. 25, 1597-1598, 2013.

7. Brar, R. S., K. Saurav, D. Sarkar, and K. V. Srivastava, "A triple band circular polarized monopole antenna for GNSS/UMTS/LTE," Microwave and Opt. Techno. Lett., Vol. 59, No. 2, 298-304, February 2017.

8. Patel, R., T. Upadhyaya, A. Desai, and M. Palandoken, "Low profile multiband meander antenna for LTE/WiMAX/WLAN and INSAT-C application," Int. J. Electron Comm., 90-98, 2019.

9. Rajeshkumar, V. and S. Raghavan, "A compact metamaterial inspired triple band antenna for reconfigurable WLAN/WiMAX applications," Int. J. Electron Comm., 274-280, 2015.

10. Ali, T., M. M. Kaleeq, and R. C. Biradar, "A multiband reconfigurable slot antenna for wireless applications," Int. J. Electron Comm., 273-280, 2018.

11. Ali, T., K. D. Prasad, and R. C. Biradar, "A miniaturized slotted multiband antenna for wireless applications," J. Comp. Electomagnetics, 1056-1070, 2018.

12. Salih, A. A. and M. S. Sharawi, "A dual-band highly miniaturized patch antenna," IEEE Antennas Wirel. Propag. Lett., Vol. 15, 1783-1786, 2016.

13. Gautam, A. K., A. Bisht, and B. K. Kanaujia, "A wideband antenna with defective ground plane for WLAN/WiMAX applications," Int. J. Electron Comm., 354-358, 2016.

14. Rajalakshmi, P. and N. Gunavathi, "Compact complementary folded triangle split ring resonator triband mobile handset planar antenna for voice and Wi-Fi applications," Progress In Electromagnetics Research C, Vol. 91, 253-264, 2019.

15. Singh, G. and A. P. Singh, "On the design of planar antenna using Fibonacci word fractal geometry in support of public safety," Int. J. RF Microw. Comput Aided Eng., Vol. 29, e21554, 1-7, 2018.

16. Desai, A., T. Upadhyaya, and M. Palandoken, "Dual band slotted transparent resonator for wireless local area network applications," Microwave and Opt. Techno. Lett., 1-6, 2018.

17. Desai, A., T. Upadhyaya, M. Palandoken, and C. Gocen, "Dual band transparent antenna for wireless MIMO system applications," Microwave and Opt. Techno. Lett., 1-12, 2019.

18. Anil Kumar, C. V., V. A. Bensi, and B. Paul, "A novel printed antenna for WLAN applications at 2.45 GHz," ICGITS, 2013.

19. Huang, D. and Z. Du, "Compact nine-band antenna for 4G/5G smartphones," Int. J RF Microw. Comput Aided Eng., Vol. 29, e21575, 1-9, 2019.