Vol. 88
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-12-17
Characterization of PVDF-Gr Composite Films for Electromagnetic Interference Shielding Application
By
Progress In Electromagnetics Research Letters, Vol. 88, 105-112, 2020
Abstract
Graphite receives tremendous attentions as filler for conducting composite due to its low cost and high electrical conductivities. In this work we use polyvinylidene fluoride (PVDF) as insulating matrix and graphite (Gr) as a filler to develop conducting composite films using solvent casting technique. The dielectric properties of the developed PVDF-Gr films were analysed for the frequency range of 100 kHz to 10 MHz. The morphology of the obtained films was investigated by scanning electron microscopy. The EMI shielding properties of the PVDF-Gr composite films were evaluated theoretically using ɛ′, tan δ, and σ in the desired radio frequency region. Mechanical strength of the films was tested by universal testing machine. Due to advantages such as light weight, flexibility, and low cost the developed film with the thickness of ~0.15 mm had very good potential to be used for fabricating electromagnetic compatible electronic devices.
Citation
Vikas Rathi, Varij Panwar, and Brijesh Prasad, "Characterization of PVDF-Gr Composite Films for Electromagnetic Interference Shielding Application," Progress In Electromagnetics Research Letters, Vol. 88, 105-112, 2020.
doi:10.2528/PIERL19090202
References

1. Zhao, C., R. Zhao, S. Hamidinejad, and C. Park, "Flexible, ultrathin, and high-efficiency electromagnetic shielding properties of poly(vinylidene fluoride)/carbon composite films," ACS Appl. Mater. Interfaces, Vol. 9, No. 24, 20873-20884, Jun. 2017.
doi:10.1021/acsami.7b04935

2. Rathi, V., V. Panwar, G. Anoop, M. Chaturvedi, K. Sharma, and B. Prasad, "Flexible, thin composite film to enhance the electromagnetic compatibility of biomedical electronic devices," IEEE Transactions on Electromagnetic Compatibility, Vol. 61, No. 4, 1033-1041, Aug. 2019.
doi:10.1109/TEMC.2018.2881267

3. Li, J., H. Liu, J. Guo, Z. Hu, Z. Wang, B. Wang, L. Liu, Y. Huang, and Z. J. Guo, "Flexible, conductive, porous, fibrillar polymer-gold nanocomposites with enhanced electromagnetic interference shielding and mechanical properties," Mater. Chem. C, Vol. 5, No. 5, 1095-1105, 2017.
doi:10.1039/C6TC04780G

4. Chen, M., L. Zhang, S. Duan, S. Jing, H. Jiang, M. Luo, and C. Li, "Highly conductive and flexible polymer composites with improved mechanical and electromagnetic interference shielding performances," Nanoscale, Vol. 6, No. 7, 3796-3803, 2014.
doi:10.1039/C3NR06092F

5. Rathi, V. and V. Panwar, "Electromagnetic interference shielding analysis of conducting composites in near- and far-field region," IEEE Transactions on Electromagnetic Compatibility, Vol. 99, 1-7, Jan. 2018.

6. Gupta, T. K., B. P. Singh, V. N. Singh, S. Teotia, A. P. Singh, I. Elizabeth, S. R. Dhakate, S. Dhawan, and R. B. Mathur, "MnO2 decorated graphenenanoribbons with superior permittivity and excellent microwave shielding properties," Mater. Chem. A, Vol. 2, No. 12, 4256-4263, 2014.
doi:10.1039/c3ta14854h

7. Eswaraiah, V., V. Sankaranarayanan, and S. Ramaprabhu, "Functionalized graphene — PVDF foam composites for EMI shielding," Macromol. Mater. Eng., Vol. 296, 894-898, 2011.
doi:10.1002/mame.201100035

8. Taka, T., "EMI shielding measurements on poly(3-octyl thiophene) blends," Synthetic Metals, Vol. 41, No. 3, 1177-1180, May 1991.
doi:10.1016/0379-6779(91)91582-U

9. Panwar, V., V. K. Sachdev, and R. M. Mehra, "Insulator conductor transition in low-density polyethylene-graphite composites," Eur. Polym. J., Vol. 43, No. 2, 573-585, Feb. 2007.
doi:10.1016/j.eurpolymj.2006.11.017

10. Panwar, V., B. Kang, J. O. Park, S. Park, and R. M. Mehra, "Study of dielectric properties of styreneacrylonitrile graphite sheets composites in low and high frequency region," Eur. Polm. J., Vol. 45, No. 6, 1777-1784, Jun. 2009.
doi:10.1016/j.eurpolymj.2009.02.020

11. Loya, S., "Analysis of shielding effectiveness in the electric field and magnetic field and plane wave for infinite sheet metals," IJEA, Vol. 6, No. 2, 31-41, 2016.

12. Panwar, V. and M. Mehra, "Analysis of electrical, dielectric, and electromagnetic interference shielding behavior of graphite filled high density polyethylene composites," Polym. Eng. Sci., Vol. 48, No. 11, 2178-2187, Sep. 2008.
doi:10.1002/pen.21163

13. Chen, H. L., C. H. Su, S. P. Ju, H. Y. Chen, J. S. Lin, J. Y. Hsieh, P. Y. Yang, and C. Y. Lin, "Predicting mechanical properties of polyvinylidene fluoride/carbon nanotube composites by molecular simulation," Materials Research Express, Vol. 4, No. 11, 115025, Nov. 2017.
doi:10.1088/2053-1591/aa985e