Vol. 88
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-12-08
Microstrip Diplexer with Π-Shaped Matching Circuit
By
Progress In Electromagnetics Research Letters, Vol. 88, 59-65, 2020
Abstract
We propose a new method to match diplexer channels with a common port in which a π-shaped strip conductor is used as a matching circuit. The applicability of the method is illustrated by simulating and fabricating a microstrip diplexer for GPS/GLONASS applications. The central frequencies of the channels are 1.234 GHz and 1.597 GHz, and their fractional bandwidths are 6.8% and 7.3%, respectively; minimum insertion losses are 1.05 dB and 1.08 dB. The main advantage of the diplexer is its compact size: 16.8 mm × 11.0 mm × 6.4 mm in housing. Using 1D models and a quasi-TEM approach, the frequency-dependent coupling coefficients between the matching circuit and input resonators of the channels are calculated, and the influence of the matching circuit's geometrical parameters on its coupling with diplexer channels is studied.
Citation
Aleksandr Leksikov, Alexey Mikhailovich Serzhantov, Iliya Valerievich Govorun, Aleksey Olegovich Afonin, Andrey Vitalievich Ugryumov, and Andrey Leksikov, "Microstrip Diplexer with Π-Shaped Matching Circuit," Progress In Electromagnetics Research Letters, Vol. 88, 59-65, 2020.
doi:10.2528/PIERL19083005
References

1. Waheed, U., A. Imtiaz, and M. Shafqat, "Suspended stripline diplexer design using low pass and high pass filters," Proceedings of 15th International Bhurban Conference on Applied Sciences & Technologies (IBCAST), 850-852, Islamabad, Pakistan, January 9–19, 2018.

2. Deng, P.-H. and J.-T. Tsai, "Design of microstrip lowpass-bandpass diplexer," IEEE Microw. Wireless Compon. Lett., Vol. 23, 332-334, July 2013.
doi:10.1109/LMWC.2013.2262264

3. Hsieh, L.-H. and K. Chang, "New microstrip diplexers using open-loop ring resonators with two transmission zeros," Microw. & Opt. Technol. Lett., Vol. 44, 396-398, March 2005.
doi:10.1002/mop.20647

4. Yang, T., P.-L. Chi, and T. Itoh, "High isolation and compact diplexer using the hybrid resonators," IEEE Microw. Wireless Compon. Lett., Vol. 20, 551-553, October 2010.
doi:10.1109/LMWC.2010.2052793

5. Zhou, Y.-G., H.-W. Deng, and Y.-J. Zhao, "High isolation microstrip diplexer with enhanced stopband characteristics for GSM and WLAN application," Microw. & Opt. Technol. Lett., Vol. 55, 2990-2993, December 2013.
doi:10.1002/mop.27949

6. Belyaev, B. A., A. M. Serzhantov, and V. V. Tyurnev, "A dual-mode splitmicrostrip resonator and its application in frequency selective devices," Microw. & Opt. Technol. Lett., Vol. 55, 2186-2190, September 2013.
doi:10.1002/mop.27806

7. Chuang, M.-L. and M.-T. Wu, "Microstrip diplexer design using common T-shaped resonator," IEEE Microw. Wireless Compon. Lett., Vol. 21, 583-585, November 2011.
doi:10.1109/LMWC.2011.2168949

8. Chen, D., L. Zhu, H. Bu, and C. Cheng, "A novel planar diplexer using slotline-loaded microstrip ring resonator," IEEE Microw. Wireless Compon. Lett., Vol. 25, 706-708, November 2015.
doi:10.1109/LMWC.2015.2479836

9. Guan, X., F. Yang, H. Liu, and L. Zhu, "Compact and high-isolation diplexer using dual-mode stub-loaded resonators," IEEE Microw. Wireless Compon. Lett., Vol. 24, 385-387, June 2014.
doi:10.1109/LMWC.2014.2313591

10. Chen, Y.-W. and M.-H. Ho, "Design of microstrip filter and diplexer with a multiple harmonics suppression for mobile communication," Microw. & Opt. Technol. Lett., Vol. 48, 1812-1816, September 2006.
doi:10.1002/mop.21769

11. Weng, M.-H., H.-W. Wu, and K. Shu, "Design of compact microstrip diplexer with simple coupled resonators," Microw. & Opt. Technol. Lett., Vol. 49, 1222-1225, May 2007.
doi:10.1002/mop.22394

12. Theerawisitpong, S. and P. Pinpathomrat, "A microstrip diplexer using folded single steppedimpedance resonator for 3G microcell stations," Int. Journ. Inform. and Electron. Eng., Vol. 6, 171-174, May 2016.

13. Chen, X., X. Yu, and S. Sun, "Design of high-performance microstrip diplexers with stub-loaded parallel-coupled lines," Electronics Letters, Vol. 53, No. 15, 1052-1054, July 2017.
doi:10.1049/el.2017.1605

14. Belyaev, B. A., M. M. Titov, and V. V. Tyurnev, "Coupling coefficient of irregular microstrip resonators," Radiophysics and Quantum Electronics, Vol. 43, No. 8, 649-653, 2000.
doi:10.1023/A:1004813504573

15. Tyurnev, V. V., "Coupling coefficients of resonators in microwave filter theory," Progress In Electromagnetics Research B, Vol. 21, 47-67, 2010.