Vol. 86
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-07-23
Electromagnetic Shielding Effectiveness of Gypsum-Magnetite Composite at X-Band Frequency
By
Progress In Electromagnetics Research Letters, Vol. 86, 21-26, 2019
Abstract
Rapid development of the electronic industry has increased the frequency of communication devices which lead to higher intensity of electromagnetic (EM) wave production. Too much exposure of EM wave can cause harm to health besides imposing disturbances in performances of other electronic devices. Hence, this research studies the structural and electromagnetic properties of materials that can act as electromagnetic shielding material at x-band frequency. Different compositions of magnetite powder/Fe3O4 (0, 10, 20 and 100 wt.%) were prepared to be dispersed in gypsum powders to form gypsum-magnetite composites. The structural properties of composites were characterized using Scanning Electron Microscopy (SEM) to observe homogeneity of the composites. The X-Ray Diffraction (XRD) was used to determine phase composition of the gypsum-magnetite composites. Scattering parameters of reflection coefficient, S11, and transmission coefficient, S21, were measured using Vector Network Analyzer (VNA). These parameters will be used to calculate the shielding effectiveness (SE) of gypsum-magnetite composite at x-band frequency. The results show that the total SE of the gypsum-magnetite composites were increased by adding magnetite powders.
Citation
Mohamad Ashry Jusoh, You Kok Yeow, Rodziah Nazlan, and Fahmiruddin Esa, "Electromagnetic Shielding Effectiveness of Gypsum-Magnetite Composite at X-Band Frequency," Progress In Electromagnetics Research Letters, Vol. 86, 21-26, 2019.
doi:10.2528/PIERL19051401
References

1. Liu, Y., et al. "Electromagnetic interference shielding and absorption properties of Ti3SiC2/nano Cu/epoxy resin coating," Journal of Alloys and Compounds, Vol. 740, 68-76, 2018.
doi:10.1016/j.jallcom.2018.01.017

2. Chan, Y. L., F. Esa, K. Y. You, M. S. S, M. Z. H. Mayzan, and M. A. Jusoh, "Electromagnetic properties of magnetite/epoxy resin composites at X-band frequency," 2017 Progress In Electromagnetics Research Symposium --- Fall (PIERS --- FALL), Singapore, Singapore, Nov. 19-22, 2017.

3. Ahmad, S. H., et al. "Magnetic and microwave absorbing properties of magnetite-thermoplastic natural rubber nanocomposites," Journal of Magnetism and Magnetic Materials, Vol. 322, No. 21, 3401-3409, 2010.
doi:10.1016/j.jmmm.2010.06.036

4. Hu, T., et al. "Electromagnetic interference shielding properties of carbonyl iron powder-carbon fiber felt/epoxy resin composites with different layer angle," Materials Letters, Vol. 142, 242-245, 2015.
doi:10.1016/j.matlet.2014.12.026

5. Al-Saleh, M. H., "Influence of conductive network structure on the EMI shielding and electrical percolation of carbon nanotube/polymer nanocomposites," Synthetic Metals, Vol. 205, 78-84, 2015.
doi:10.1016/j.synthmet.2015.03.032

6. Liu, X., et al. "Fabrication and electromagnetic interference shielding effectiveness of carbon nanotube reinforced carbon fiber/pyrolytic carbon composites," Carbon, Vol. 68, 501-510, 2014.
doi:10.1016/j.carbon.2013.11.027

7. Liu, X., et al. "Electromagnetic interference shielding effectiveness of titanium carbide sheets," Materials Letters, Vol. 205, 261-263, 2017.
doi:10.1016/j.matlet.2017.06.101