Vol. 86
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-08-06
Differential Far-End Crosstalk Mitigation with Polarity Reversal
By
Progress In Electromagnetics Research Letters, Vol. 86, 53-58, 2019
Abstract
In order to reduce far-end crosstalk between two differential line pairs of microstrip, this paper proposes a method of reducing far end crosstalk by polarity inversion. In this way, the signal line is placed in the middle of PAD of one capacitor to achieve polarity reversal at the AC coupling capacitor of the differential line. The simulation results show that, in this way, the far end crosstalk can be reduced by 63.6%, and this method of far end crosstalk suppression has an effect on both pairs of differential lines.
Citation
Xiaofeng Song, and Deheng Li, "Differential Far-End Crosstalk Mitigation with Polarity Reversal," Progress In Electromagnetics Research Letters, Vol. 86, 53-58, 2019.
doi:10.2528/PIERL19043004
References

1. Shao, J. and Z. Jie, "Design of a high density connector for high-speed backplane," Chinese Journal of Electron Devices, Vol. 39, No. 2, 291-297, Apr. 2016.

2. Huang, B., X.-B. Li, Z. Zeng, et al. "Study on signal integrity analysis method for electrical connector," Instrument Technique and Sensor, No. 5, 95-99, May 2017.

3. Wang, Y., Y. Zhao, and X. Li, "Crosstalk suppression by applying multilevel transmission," Progress In Electromagnetics Research Letters, Vol. 81, 45-50, 2019.
doi:10.2528/PIERL19030502

4. Mudavath, R. and B. R. Naik, "Estimation of far end crosstalk and near end crosstalk noise with mutually coupled RLC interconnect models," 2018 International Conference on Communication and Signal Processing (ICCSP), 182-185, Chennai, 2018.
doi:10.1109/ICCSP.2018.8524191

5. Chhay, S. K., R. K. Kunze, and Y. Chu, "Crosstalk mitigation in dense microstrip wiring using stubby lines," 2013 IEEE 22nd Conference on Electrical Performance of Electronic Packaging and Systems, 231-234, San Jose, CA, 2013.

6. Ye, X., K. Xiao, and R. Enriquez, "Differential far-end crosstalk cancellation --- Implementations and challenges," 2012 IEEE International Symposium on Electromagnetic Compatibility, 193-198, Pittsburgh, PA, 2012.
doi:10.1109/ISEMC.2012.6351785

7. Enriquez, R., K. Xiao, B. Lee, and M. Tlaxcalteco, "Differential symmetry principle for differential crosstalk cancellation," 2013 IEEE International Symposium on Electromagnetic Compatibility, 730-734, Denver, CO, 2013.

8. Wang, Y. and X. Li, "Crosstalk cancellation method based on unitary transformation of coupled transmission lines-channel transmission matrix," Progress In Electromagnetics Research Letters, Vol. 52, 45-50, 2015.
doi:10.2528/PIERL15011602

9. Tani, L. and N. E. Ouazzani, "Minimizing crosstalk on printed circuit board using non uniform guard traces," 2016 International Conference on Information Technology for Organizations Development (IT4OD), 1-4, Fez, 2016.

10. Lee, B., et al. "Design optimization for minimal crosstalk in differential interconnect," Proceeding of the DesignCon, 1263-1292, 2012.

11. Fan, J., A. Hardock, R. Rimolo-Donadio, S. Müller, Y. H. Kwark, and C. Schuster, "Signal integrity: Efficient, physics-based via modeling: Return path, impedance, and stub effect control," IEEE Electromagnetic Compatibility Magazine, Vol. 3, No. 1, 76-84, 1st Quarter, 2014.
doi:10.1109/MEMC.2014.6798802

12. Wu, N. and F. K. Wu, "A design method for reducing the influence of crosstalk between high speed differential pairs,", C.N. Patent 104182576, May 3, 2017.

13. Ye, X. N., "Differential signal crosstalk reduction,", U.S. Patent 8624687, 2014.

14. Ye, X. N., "Signal routing with reduced crosstalk,", U.S. Patent 9893761, 2018.

15. Bogatin, E., Signal and Power Integrity --- Simplified, Prentice Hall PTR, 2010.