Vol. 81
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-01-25
Design and Analyses of a CRLH-HMSIW-Based LWA with Low Cross-Polarization
By
Progress In Electromagnetics Research Letters, Vol. 81, 107-112, 2019
Abstract
A composite right/left-handed (CRLH) half mode substrate integrated waveguide (HMSIW) based leaky wave antenna (LWA) is designed and analyzed in this paper. Equivalent circuit of the unit cell is extracted, and the CRLH performance is clarified. Two HMSIW structures are placed back-to-back to obtain low cross-polarization performance, which is further validated by differential excitation principle. The presented LWA is demonstrated to be a balanced structure with a beam scanning range from -60° to +31°. Besides, less than 1.7 dBi gain variation in the working band (46% centered at 13 GHz) is obtained. Simulated and measured results agree well as experiment shows.
Citation
Huan Zhang, Tao Wan, and Tao Ni, "Design and Analyses of a CRLH-HMSIW-Based LWA with Low Cross-Polarization," Progress In Electromagnetics Research Letters, Vol. 81, 107-112, 2019.
doi:10.2528/PIERL18120511
References

1. Huo, X., J. Wang, D. Li, Z. Zhang, M. Chen, and Z. Li, "Leaky rectangular waveguide with circular polarization property," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 11, 5098-5101, 2015.
doi:10.1109/TAP.2015.2473693

2. Li, Y., Q. Xue, E. K.-N. Yung, and Y. Long, "Fixed-frequency dual-beam scanning microstrip leaky wave antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 6, 444-446, 2007.
doi:10.1109/LAWP.2007.900957

3. Williams, J. T., P. Baccarelli, S. Paulotto, and D. R. Jackson, "1-D combine leaky-wave antenna with the open-stopband suppressed: Design considerations and comparison with measurements," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 9, 4484-4492, 2013.
doi:10.1109/TAP.2013.2271234

4. Cameron, T. R., A. T. Sutinjo, and M. Okoniewski, "A circularly polarized broadside radiating ‘Herringbong’ array design with the leaky-wave approach," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 826-829, 2010.
doi:10.1109/LAWP.2010.2066950

5. Machac, J., M. Polivka, and K. Zemlyakov, "A dual band leaky wave antenna on a CRLH substrate integrated waveguide," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 7, 3876-3879, 2013.
doi:10.1109/TAP.2013.2256097

6. Haghighi, S. S., A.-A. Heidari, and M. Movahhedi, "A three-band substrate integrated waveguide leaky-wave antenna based on composite right/left-handed structure," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 10, 4578-4582, 2015.
doi:10.1109/TAP.2015.2456951

7. Jin, C. and A. Alphones, "Leaky-wave radiation behavior from a double periodic composite right/left-handed substrate integrated waveguide," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 4, 1727-1735, 2012.
doi:10.1109/TAP.2012.2186248

8. Dong, Y. and T. Itoh, "Composite right/left-handed substrate integrated waveguide and half mode substrate integrated waveguide leaky-wave structures," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 3, 767-775, 2011.
doi:10.1109/TAP.2010.2103025

9. Saghati, A. P., M. M. Mirsalehi, and M. H. Neshati, "A HMSIW circularly polarized leakywave antenna with backward, broadside, and forward radiation," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 451-454, 2014.
doi:10.1109/LAWP.2014.2309557

10. Horii, Y., C. Caloz, and T. Itoh, "Super-compact multilayered left-handed transmission line and diplexer application," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 4, 1527-1534, 2005.
doi:10.1109/TMTT.2005.845189