Vol. 82

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2019-03-12

Impact of External DC Magnetic Bias Field and Frequency on the Bistability Features of a Nonlinear Microwave Meta-Atom

By Aleksey A. Girich and Sergey I. Tarapov
Progress In Electromagnetics Research Letters, Vol. 82, 81-87, 2019
doi:10.2528/PIERL18112701

Abstract

In this paper, we present our experimental study of the effect of the external DC magnetic bias field on the nonlinear properties of meta-atom loaded with ferrite elements of different shapes. It is demonstrated experimentally that the adjustment of the resonance frequency of the meta-atom loaded with the ferrite elements of different shapes is possible not only by the input microwave power but also by the external DC magnetic bias field. It is shown that as the external DC magnetic bias field is increased to a certain value, the resonance curve of the nonlinear meta-atom demonstrates bistability. In addition, we achieve significant enhancement of the meta-atom nonlinearity using the nonlinear properties of both ferrite and varactor diode.

Citation


Aleksey A. Girich and Sergey I. Tarapov, "Impact of External DC Magnetic Bias Field and Frequency on the Bistability Features of a Nonlinear Microwave Meta-Atom," Progress In Electromagnetics Research Letters, Vol. 82, 81-87, 2019.
doi:10.2528/PIERL18112701
http://jpier.org/PIERL/pier.php?paper=18112701

References


    1. Gibbs, H. M., S. L. McCall, and T. N. C. Venkatesan, "Differential gain and bistability using a sodium-filled Fabry-Perot interferometer," Phys. Rev. Lett., Vol. 36, No. 19, 1135-1138, 1976.
    doi:10.1103/PhysRevLett.36.1135

    2. Ding, Y., C. Xue, Y. Sun, H. Jiang, Y. Li, H. Li, and H. Chen, "Subwavelength electromagnetic switch: Bistable wave transmission of side-coupling nonlinear meta-atom," Optics Express, Vol. 20, No. 22, 24813-24818, 2012.
    doi:10.1364/OE.20.024813

    3. Tarapov, S. I., Yu. P. Machekhin, and A. S. Zamkovoy, Magnetic Resonance for Optoelectronic Materials Investigating, 144, ISBN 978-966-8604-42-3, Collegium, Kharkov, 2008.

    4. Tuz, V. R., S. L. Prosvirnin, and L. A. Kochetova, "Optical bistability involving planar metamaterials with broken structural symmetry," Phys. Rev. B, Vol. 82, 233402, 2010.
    doi:10.1103/PhysRevB.82.233402

    5. Schurig, D., J. J.Mock, and D. R. Smith, "Electric-field-coupled resonators for negative permittivity metamaterials," Appl. Phys. Lett., Vol. 88, No. 4, 041109, 2006.
    doi:10.1063/1.2166681

    6. Girich, A. and S. Tarapov, "Left-handed properties of composite ferrite/semiconductor medium oriented in staggered order," Terahertz and Mid Infrared Radiation, 44-47, 2011.

    7. Poutrina, E., D. Huang, and D. R. Smith, "Analysis of nonlinear electromagnetic metamaterials," New Journal of Physics, Vol. 12, 1-27, 2010.

    8. Huang, D., E. Poutrina, and D. R. Smith, "Analysis of the power dependent tuning of a varactor-loaded metamaterial at microwave frequencies," Appl. Phys. Lett., Vol. 96, 104104, 2010.
    doi:10.1063/1.3356223

    9. Smith, D. R., D. C. Vier, T. Koschny, and C. M. Soukoulis, Phys. Rev. E, Vol. 71, 036617, 2005.
    doi:10.1103/PhysRevE.71.036617

    10. Vertiy, A. A., S. P. Gavrilov, and S. I. Tarapov, "The transmission and bistability of a nonlinear quasioptical resonator in ESR-conditions in ruby," International Journal of Infrared and Millimeter Waves, Vol. 13, No. 9, 1403-1419, 1992.
    doi:10.1007/BF01009997