Vol. 80

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2018-12-14

Compact Quad-Channel Diplexer Using Defected Stepped Impedance Resonators

By Anfu Zhu, Haidong Zhou, Jianzhong Chen, and Jianxing Li
Progress In Electromagnetics Research Letters, Vol. 80, 127-133, 2018
doi:10.2528/PIERL18100701

Abstract

This paper proposes a new compact quad-channel diplexer (2.45/4.2 GHz and 3.5/5.2 GHz) using defected stepped impedance resonators (DSIRs). The proposed quad-channel diplexer is composed of one common input feeding line, sixteen folded DSIRs, and two output feeding lines. Every four DSIRs are designed to determine passband characteristics of one individual channel, and two passbands are filtered out eventually at each output port. The distributed coupling technique featured by small loading effect is introduced to eliminate the necessity of extra impedance matching networks, which consequently results in a reduced circuit size. A diplexer prototype operated at 2.45/4.2 GHz and 3.5/5.2 GHz bands with measured 3-dB fractional bandwidths of 12.5%, 7.2%, 6.4%, and 5.0% has been implemented, showing a high isolation of larger than 33 dB between the two output ports. Experimental results coincide well with the theoretical predictions and simulation results.

Citation


Anfu Zhu, Haidong Zhou, Jianzhong Chen, and Jianxing Li, "Compact Quad-Channel Diplexer Using Defected Stepped Impedance Resonators," Progress In Electromagnetics Research Letters, Vol. 80, 127-133, 2018.
doi:10.2528/PIERL18100701
http://jpier.org/PIERL/pier.php?paper=18100701

References


    1. Pozar, D. M., Microwave Engineering, John Wiley & Sons, New York, 1998.

    2. Yang, T., P. L. Chi, and T. Itoh, "High isolation and compact diplexer using the hybrid resonators," IEEE Microwave Wireless Compon. Lett., Vol. 20, No. 10, 551-3, 2010.
    doi:10.1109/LMWC.2010.2052793

    3. Shi, J., J.-X. Chen, and Z.-H. Bao, "Diplexers based on microstrip line resonators with loaded elements," Progress In Electromagnetics Research, Vol. 115, 423-439, 2011.
    doi:10.2528/PIER11031516

    4. Chen, C. F., T. Y. Huang, C. P. Chou, and R. B. Wu, "Microstrip diplexers design with common resonator sections for compact size, but high isolation," IEEE Trans. Microwave Theory Tech., Vol. 54, No. 5, 1945-52, 2006.
    doi:10.1109/TMTT.2006.873613

    5. Chuang, M. L. and M. T. Wu, "Microstrip diplexer design using common T-shaped resonator," IEEE Microwave Wireless Compon. Lett., Vol. 21, No. 11, 583-5, 2011.
    doi:10.1109/LMWC.2011.2168949

    6. Hong, S. and K. Chang, "A 10-35-GHz six-channel microstrip multiplexer for wide-band communication systems," IEEE Trans. Microwave Theory Tech., Vol. 54, No. 4, 1370-8, 2006.
    doi:10.1109/TMTT.2006.871912

    7. Makimoto, M. and S. Yamashita, "Bandpass filters using parallel coupled stripline stepped impedance resonators," IEEE Trans. Microwave Theory Tech., Vol. 28, No. 12, 1413-7, 1980.
    doi:10.1109/TMTT.1980.1130258

    8. Wei, F., P. Y. Qin, Y. J. Guo, and X. W. Shi, "Design of multi-band bandpass filters based on stub loaded stepped-impedance resonator with defected microstrip structure," IET Microw. Antennas Propag., Vol. 10, No. 2, 230-6, 2016.
    doi:10.1049/iet-map.2015.0495

    9. Ai, J., Y. H. Zhang, K. D. Xu, D. T. Li, and Q. H. Liu, "Design of a high-selectivity quad-band bandpass filter based on λ/4 resonators with alternative J/K inverters," Int. J. Electron. Commun., Vol. 70, No. 8, 1028-33, 2016.
    doi:10.1016/j.aeue.2016.04.019

    10. Wu, H. W., S. H. Huang, and Y. F. Chen, "Design of new quad-channel diplexer with compact circuit size," IEEE Microwave Wireless Compon. Lett., Vol. 23, No. 5, 240-2, 2013.
    doi:10.1109/LMWC.2013.2253314

    11. Hsu, K. W., W. C. Hung, and W. H. Tu, "Design of four-channel diplexer using distributed coupling technique," Microwave Opt. Technol. Lett., Vol. 58, No. 1, 166-70, 2016.
    doi:10.1002/mop.29516

    12. Tu, W. H. and W. C. Hung, "Microstrip eight-channel diplexer with wide stopband," IEEE Microwave Wireless Compon. Lett., Vol. 24, No. 11, 742-4, 2014.
    doi:10.1109/LMWC.2014.2348499

    13. Deepak, U., T. K. Roshna, C. M. Nijas, K. Vasudevan, and P. Mohanan, "A dual band SIR coupled dipole antenna for 2.4/5.2/5.8 GHz applications," IEEE Trans. Antennas Propag., Vol. 63, No. 4, 1514-20, 2015.
    doi:10.1109/TAP.2015.2393876

    14. Sagawa, M., M. Makimoto, and S. Yamashita, "Geometrical structures and fundamental characteristics of microwave stepped-impedance resonators," IEEE Trans. Microwave Theory Tech., Vol. 45, No. 7, 1078-85, 1997.
    doi:10.1109/22.598444

    15. Liu, H. W., W. Y. Xu, Z. C. Zhang, and X. H. Guan, "Compact diplexer using slotline stepped impedance resonator," IEEE Microw. Wireless Compon. Lett., Vol. 23, No. 2, 75-7, 2013.
    doi:10.1109/LMWC.2013.2238912

    16. Wen, P. H., C. I. G. Hsu, C. H. Lee, and H. H. Chen, "Design of balanced and balun diplexers using stepped-impedance slot-line resonator," J. Electromagn. Waves Appl., Vol. 28, No. 6, 700-15, 2014.
    doi:10.1080/09205071.2014.885398

    17. Hong, J. S. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, John Wiley & Sons, New York, 2001.
    doi:10.1002/0471221619

    18. Li, Z.-P., L.-J. Zhang, T. Su, and C.-H. Liang, "A compact microstrip quadruplexer using slotline stepped impedance stub loaded resonators," Progress In Electromagnetics Research, Vol. 140, 509-522, 2013.
    doi:10.2528/PIER13042105