Vol. 80
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-12-07
Detection and Location of Nonlinear Scatterers Using DORT Applied with Pulse Inversion
By
Progress In Electromagnetics Research Letters, Vol. 80, 101-108, 2018
Abstract
In this paper, an experimental demonstration employing the decomposition of the time-reversal operator (known as DORT) in combination with pulse inversion is reported, allowing one to detect and selectively focus on nonlinear targets. DORT is a technique based on a multistatic configuration that separates the detected targets by means of eigendecomposition of the time reversal operator allowing for selective transmission of waves towards a target of interest. Pulse inversion is a technique that enhances harmonic responses while suppressing fundamental responses. By applying DORT with pulse inversion (PIDORT), harmonic detection and selective transmission to detected nonlinear targets can be enhanced. The results from our experiment show that PI-DORT can effectively detect and separate nonlinear targets for selective transmission.
Citation
Joesph M. Faia, Yujie He, Hong Soo Park, Edward Wheeler, and Sun K. Hong, "Detection and Location of Nonlinear Scatterers Using DORT Applied with Pulse Inversion," Progress In Electromagnetics Research Letters, Vol. 80, 101-108, 2018.
doi:10.2528/PIERL18092605
References

1. Riley, J., A. Smith, D. Reynolds, A. Edwards, J. Osborne, I. Williams, N. Carreck, and G. Poppy, "Tracking bees with harmonic radar," Nature, Vol. 379, 29-30, Jan. 1996.
doi:10.1038/379029b0

2. Lovei, G., I. Stringer, C. Devine, and M. Cartellieri, "Harmonic radar - A method using inexpensive tags to study invertebrate movement on land," New Zealand Journal of Ecology, Vol. 21, No. 2, 187-193, 1997.

3. Colpitts, B. and G. Boiteau, "Harmonic radar transceiver design: Miniature tags for insect tracking," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 11, 2825-2832, Nov. 2004.
doi:10.1109/TAP.2004.835166

4. Federico, A. and L. Roseli, "Theory of zero-power RFID sensors based on harmonic generation and orthogonally polarized antennas," Progress In Electromagnetics Research, Vol. 134, 337-357, 2013.

5. Mazzaro, G., K. A. Gallagher, A. R. Owens, K. D. Sherbondy, and R. M. Narayanan, "Ultrawideband harmonic radar for locating radio-frequency electronics," ARL Technical Report, ARL-TR-7256, Mar. 2015.

6. Huang, H., P.-Y. Chen, C.-H. Hung, R. Gharpurey, and D. Akinwande, "A zero power harmonic transponder sensor for ubiquitous wireless μL liquid-volume monitoring," Scientific Reports, Vol. 6, No. 18795, 1-4, Jan. 2016.

7. Faia, J. M., K. W. McClintick, and S. K. Hong, "Application of DORT and pulse inversion to detection and selective focusing on nonlinear elements," 32nd General Assembly & Scientific Symposium of the International Union of Radio Science (URSI-GASS), 2017.

8. Prada, C., S. Manneville, D. S. Poliansky, and M. Fink, "Decomposition of the time reversal operator: Detection and selective focusing on two scatterers," Journal of Acoustical Society of America, Vol. 4, No. 99, 2067-2076, 1996.
doi:10.1121/1.415393

9. Yavuz, M. E. and F. L. Teixeira, "Full time-domain DORT for ultrawideband electromagnetic fields in dispersive, random inhomogeneous media," IEEE Transactions on Antennas and Propagation, Vol. 8, No. 54, 2305-2315, 2006.
doi:10.1109/TAP.2006.879196

10. Leighton, T. G., G. H. Chua, P. R. White, K. F. Tong, H. D. Giffiths, and D. J. Daniels, "Radar clutter suppression and target discrimination using twin inverted pulses," Proceedings of the Royal Society A, Vol. 469, No. 2160, 2013.
doi:10.1098/rspa.2013.0512

11. Hong, S. K., V. Mendez, T. Koch, W. Wall, and S. Anlage, "Nonlinear electromagnetic time-reversal in an open semireverberant system," Physical Review Applied, Vol. 2, No. 044013, Oct. 2014.

12. SEMCAD X, EM simulation platform. Available from: https://speag.swiss/products/semcad/solutions.

13. Hong, S. K., "Effects of target resonances on UWB DORT," Journal of Electromagnetic Waves and Applications, Vol. 32, No. 13, 1710-1732, May 2018.
doi:10.1080/09205071.2018.1467284