Vol. 80

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2018-12-07

Gain Enhancement of Cross Shaped Patch Antenna for IEEE 802.11ax Wi-Fi Applications

By Pitchai Rajalakshmi and Nagarajan Gunavathi
Progress In Electromagnetics Research Letters, Vol. 80, 91-99, 2018
doi:10.2528/PIERL18091401

Abstract

In this paper, a dual band high gain miniaturized cross shaped patch antenna is proposed for IEEE 802.11ax applications. The radiating patch size is 0.330λ0x0.417λ0 on a low cost Flame Retardant 4 substrate. A cross shaped radiating element is designed to cover the upper band of IEEE 802.11ax, and a four ring circular Complementary Split Ring Resonator (CSRR) is etched on the cross shaped radiating element to cover the lower band of IEEE802.11ax. Thus the dual bands of 802.11ax are achieved. In order to enhance the gain, 2x2 array hexagonal metamaterial unit cell is positioned behind the substrate. To extract the constitutive parameters of the circular CSRR, NRW (Nicolson-Ross-Wier) retrieval method is used. The measured maximum gain is approximately 6 dBi, 10 dBi for 2.4 GHz, 5 GHz, respectively. Parametric study on the geometrical dimensions is investigated using HFSS 15.0.

Citation


Pitchai Rajalakshmi and Nagarajan Gunavathi, "Gain Enhancement of Cross Shaped Patch Antenna for IEEE 802.11ax Wi-Fi Applications," Progress In Electromagnetics Research Letters, Vol. 80, 91-99, 2018.
doi:10.2528/PIERL18091401
http://jpier.org/PIERL/pier.php?paper=18091401

References


    1. Bellata, B., "IEEE 802.11 ax; High-efficiency WLAN’s," IEEE Wireless Communication, Vol. 23, 38-46, 2016.
    doi:10.1109/MWC.2016.7422404

    2. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, 1-2, John Wiley & Sons, Inc, New York, 2006.

    3. Attia, H., L. Yousefi, M. M. Bait-Suwailam, M. S. Boybay, and O. M. Ramahi, "Enhanced gain microstrip antenna using engineered magnetic superstrate," IEEE Antennas Wireless Propagation Letters, Vol. 8, 1198-1201, 2009.
    doi:10.1109/LAWP.2009.2035149

    4. Javid Asad, M., M. Farhan Shafique, and S. A. Khan, "Performance restoration of dielectric embedded antennas using omega like complementary split ring resonators," Microwave and Optical Technology Letters, Vol. 59, No. 2, 357-362, 2017.
    doi:10.1002/mop.30314

    5. Pandeeswari, R. and S. Raghavan, "Microstrip antenna with complementary split ring resonator loaded ground plane for gain enhancement," Microwave and Optical Technology Letters, Vol. 57, No. 2, 292-296, 2015.
    doi:10.1002/mop.28835

    6. Martinez, F. J. H., G. Zamora, F. Paredes, F. Martin, and J. Bonache, "Multiband printed monopole antennas loaded with OCSRRs for PANs and WLANs," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1528-1531, 2011.
    doi:10.1109/LAWP.2011.2181309

    7. Pushpakaran, S. V., R. K. Raj, P. V. Vinesh, R. Dinesh, P. Mohanan, and K. Vasudevan, "A metaresonator inspired dual band antenna for wireless applications," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 4, 2287-2291, 2014.
    doi:10.1109/TAP.2014.2301161

    8. Pandeeswari, R. and S. Raghavan, "Meandered CPW-fed hexagonal split ring resonator monopole antenna for 5.8 GHz RFID applications," Microwave and Optical Technology Letters, Vol. 57, No. 3, 681-684, 2015.
    doi:10.1002/mop.28920

    9. Joshi, J. G., S. S. Pattnaik, S. Devi, and M. R. Lohokare, "Frequency switching of electrically small patch antenna using metamaterial loading," Indian Journal of Radio & Space Physics, Vol. 40, 159-165, 2011.

    10. Pandeeswari, R. and S. Raghavan, "Broadband monopole antenna with split ring resonator loaded substrate for good impedance matching," Microwave and Optical Technology Letters, Vol. 56, No. 10, 2388-2392, 2014.
    doi:10.1002/mop.28602

    11. Basaran, S. C., et al., "Multiband monopole antenna with complementary split ring resonators for WLAN and Wimax applications," Electronics Letters, Vol. 49, No. 10, 636-638, 2013.
    doi:10.1049/el.2013.0357

    12. Yang, K., H. Wang, Z. Lei, Y. Xie, and H. Lai, "CPW-fed slot antenna with triangular SRR terminated feed line for WLAN/WiMAX applications," Electronics Letters, Vol. 47, No. 12, 685-686, 2011.
    doi:10.1049/el.2011.1232

    13. Quan, X. L., R. L. Li, Y. H. Cui, and M. M. Tentzeris, "Analysis and design of a compact dual band directional antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 547-550, 2012.
    doi:10.1109/LAWP.2012.2199458

    14. Sharma, S. K. and R. K. Chaudhary, "Dual-band metamaterial-inspired antenna for mobile applications," Microwave and Optical Technology Letters, Vol. 57, No. 6, 1444-1447, 2015.
    doi:10.1002/mop.29113

    15. Pandeeswari, R., "Complimentary split ring resonator inspired meandered CPW-fed monopole antenna for multiband operation," Progress In Electromagnetics Research C, Vol. 80, 13-20, 2018.
    doi:10.2528/PIERC17101402

    16. Thamil Selvi, N., R. Pandeeswari, and P. N. Thiruvalar Selvan, "An inset-fed rectangular microstrip patch antenna with multiple split ring resonator loading for WLAN and RF-ID applications," Progress In Electromagnetics Research C, Vol. 81, 41-52, 2018.
    doi:10.2528/PIERC17110102

    17. Balanis, C. A., Modern Antenna Handbook, 157-169, John Wiley and Sons. Inc., 2005.

    18. Saha, C. and J. Y. Siddiqui, "A comparative analysis for split ring resonator of different geometrical shapes," 2011 IEEE Applied Electromagnetics Conference (AEMC), 1-4, 2011.

    19. Pal, D., A. Patnaik, and S. N. Sinha, "An analytical formulation of metamaterial based compact patch antennas," International Journal of Electronics Letters, 2016.

    20. Smith, D. R., S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of negative permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B, 2002.

    21. Chen, H. J., et al., "Experimental retrieval of the effective parameters of metamaterial based on a waveguide method," Optics Express, Vol. 14, No. 26, 2006.