Vol. 80
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-11-18
A Hybrid Method for the Coupling Analysis of Multiconductor Transmission Lines Excited by Dipole Antenna
By
Progress In Electromagnetics Research Letters, Vol. 80, 31-38, 2018
Abstract
This paper presents a hybrid method consisting of thin wire FDTD method and transmission line (TL) equations to be used for the coupling analysis of multiconductor transmission lines (MTLs) excited by a dipole antenna. In this method, the thin wire FDTD method is used to build the structure of the dipole antenna and obtain the radiation electromagnetic fields surrounding the MTLs, which are introduced into the TL equations as the distribution sources. The TL equations are utilized to model the coupling of the radiation electromagnetic fields to the MTLs, which are discrete by the scheme of the FDTD method to obtain the transient voltage and current responses on the lines and terminal loads. The accuracy and efficiency of this method have been verified by comparing with the commercial simulation software CST via one case. Moreover, the influences of the frequencies and polarization of the dipole antenna and the heights of the MTLs on the coupling of MTLs are analyzed.
Citation
Zhihong Ye, Dan Gou, Jianjian Zhou, and Xuesong Meng, "A Hybrid Method for the Coupling Analysis of Multiconductor Transmission Lines Excited by Dipole Antenna," Progress In Electromagnetics Research Letters, Vol. 80, 31-38, 2018.
doi:10.2528/PIERL18082603
References

1. Agrawal, A. K., et al. "Transient response of multiconductor transmission lines excited by a nonuniform electromagnetic field," IEEE Transactions on Electromagnetic Compatibility, Vol. 22, No. 2, 119-129, 1980.
doi:10.1109/TEMC.1980.303824

2. Tesche, F. M. and C. M. Butler, "On the addition of EM field propagation and coupling effects in the BLT equation," Interaction Notes, No. 588, 1-43, 2003.

3. Xu, Q. X. and Y. Z. Xie, "The transient response of discontinuous MTL based on BLT equation," 7th Asia-Pacific Conference on Environmental Electromagnetics (CEEM), 411-413, 2015.

4. Du, J. K., S. M. Hwang, J. W. Ahn, and J. G. Yook, "Analysis of coupling effects to PCBs inside waveguide using the modified BLT equation and full-wave analysis," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 10, 3514-3523, 2013.
doi:10.1109/TMTT.2013.2277994

5. Paul, C. R., "A SPICE model for multiconductor transmission lines excited by an incident electromagnetic field," IEEE Transactions on Electromagnetic Compatibility, Vol. 36, No. 4, 342-354, 1994.
doi:10.1109/15.328864

6. Erdin, I., A. Dounavis, and R. Achar, "A SPICE model for incident field coupling to lossy multiconductor transmission lines," IEEE Transactions on Electromagnetic Compatibility, Vol. 43, No. 4, 485-494, 2001.
doi:10.1109/15.974627

7. Xie, H. Y., J. G.Wang, R. Y. Fan, and Y. N. Liu, "A hybrid FDTD-SPICE method for transmission lines excited by a nonuniform incident wave," IEEE Transactions on Electromagnetic Compatibility, Vol. 51, No. 3, 811-817, 2009.
doi:10.1109/TEMC.2009.2020913

8. Paul, C. R., "A SPICE model for multiconductor transmission lines excited by an incident electromagnetic field," IEEE Transactions on Electromagnetic Compatibility, Vol. 36, No. 4, 342-354, 2009.
doi:10.1109/15.328864

9. Xie, H. Y., J. G.Wang, R. Y. Fan, and Y. N. Liu, "SPICE models to analyze radiated and conducted susceptibilities of shielded coaxial cables," IEEE Transactions on Electromagnetic Compatibility, Vol. 52, No. 1, 215-222, 2010.
doi:10.1109/TEMC.2009.2036929

10. Xie, H. Y., J. G. Wang, Y. Li, and H. F. Xia, "Efficient evaluation of multiconductor transmission lines with random translation over ground under a plane wave," IEEE Transactions on Electromagnetic Compatibility, Vol. 56, No. 6, 1623-1629, 2014.
doi:10.1109/TEMC.2014.2330823

11. Xie, H. Y., J. G. Wang, R. Y. Fan, and Y. N. Liu, "SPICE models for prediction of disturbances induced by nonuniform fields on shielded cables," IEEE Transactions on Electromagnetic Compatibility, Vol. 53, No. 1, 185-192, 2011.
doi:10.1109/TEMC.2010.2045895

12. Ye, Z. H., C. Liao, X. Z. Xiong, and M. Zhang, "The research and application of a novel time domain hybrid method for EMI analysis of a shielded device with lumped circuit," IEEE Transactions on Electromagnetic Compatibility, Vol. 58, No. 4, 964-970, 2016.
doi:10.1109/TEMC.2016.2551982

13. Ye, Z. H., X.-Z. Xiong, C. Liao, and Y. Li, "A hybrid method for electromagnetic coupling problems of transmission lines in cavity based on FDTD method and transmission line equation," Progress In Electromagnetic Research M, Vol. 42, 85-93, 2015.
doi:10.2528/PIERM15032605

14. Ye, Z. H., C. Liao, X. Z. Xiong, and M. Zhang, "A hybrid method combining the novel TDSC technique and FDTD method for the EMI analysis of transmission line network," IEEE Transactions on Electromagnetic Compatibility, Vol. 58, No. 4, 1211-1217, 2017.
doi:10.1109/TEMC.2017.2651884

15. Boonzaaier, J. J. and C. W. I. Pistonius, "Finite-difference time-domain approximations for thin wire with a lossy coating," IEE Proceedings Microwaves, Antennas and Propagation, Vol. 141, No. 2, 107113, 1994.
doi:10.1049/ip-map:19949903