Vol. 79
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-10-05
Planar Differential Filtenna for Communications
By
Progress In Electromagnetics Research Letters, Vol. 79, 33-38, 2018
Abstract
This letter presents a novel differential filtenna for microwave systems at 2.4 GHz on planar technology. This filtenna exhibits 5% bandwidth with a 3-pole Chebyshev response. The filtenna uses a square patch as radiating element combined with λ/2 resonators. Experimental and simulated return losses are presented with good agreement. Moreover, the experimental common and differential mode radiation patterns are presented showing an attenuation greater than 15 dB for the common mode.
Citation
Tejinder Kaur Kataria, Marisol Bastida, Jose Roberto Reyes-Ayona, Jose Luis Olvera Cervantes, and Alonso Corona-Chavez, "Planar Differential Filtenna for Communications," Progress In Electromagnetics Research Letters, Vol. 79, 33-38, 2018.
doi:10.2528/PIERL18072710
References

1. Tseng, Y.-C., P.-Y. Weng, and T.-L. Wu, "Compact wideband balanced filter for eliminating radio-frequency interference on differentially-fed antennas," 2015 IEEE International Symposium on Electromagnetic Compatibility (EMC), 1521-1526, IEEE, 2015.
doi:10.1109/ISEMC.2015.7256400

2. Colin-Beltran, E., E., A. Corona-Chavez, T. Itoh, and J. E. Mendoza-Torres, "Circular aperture slot antenna with common-mode rejection filter based on defected ground structures for broad band," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 5, 2425-31, May 2013.
doi:10.1109/TAP.2013.2246535

3. Li, L. and G. Liu, "A differential microstrip antenna with filtering response," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1983-6, 2016.

4. Cavallo, D., S. Savoia, G. Gerini, A. Neto, and V. Galdi, "Design of a low-profile printed array of loaded dipoles with inherent frequency selectivity properties," Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), 807-811, IEEE, 2011.

5. Mansour, G., M. J. Lancaster, P. S. Hall, P. Gardner, and E. Nugoolcharoenlap, "Design of filtering microstrip antenna using filter synthesis approach," Progress In Electromagnetics Research, Vol. 145, 59-67, 2014.
doi:10.2528/PIER14011405

6. Wu, W.-J., Y.-Z. Yin, S.-L. Zuo, Z.-Y. Zhang, and J.-J. Xie, "A new compact filter-antenna for modern wireless communication systems," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1131-1134, 2011.

7. Escobar, A. H., J. A. V. Tirado, J. C. C. Gomez, J. M. Mateu, E. R. Cantenys, and J. L. V. Gonzalez, "Filtenna integration achieving ideal Chebyshev return losses," Radioengineering, Vol. 23, No. 1, 362-368, 2014.

8. G.-Shiue, G.-H., J.-H. Shiu, and P.-W. Chiu, "Analysis and design of crosstalk noise reduction for coupled striplines inserted guard trace with an open-stub on time-domain in high-speed digital circuits," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 1, No. 10, 1573-1582, 2011.
doi:10.1109/TCPMT.2011.2163309

9. Kaur, M., S. Kakar, and D. Mandal, "Electromagnetic interference," Proc. 3rd Int. Conf. Electronics Computer Technology, Vol. 4, 1-5, Apr. 2011.

10. Bogatin, E., Signal Integrity-Simplified ser. Modern Semiconductor Design Series, Englewood Cliffs, Prentice Hall, NJ, USA, 2004.

11. Li, X. B., M. J. Zhao, Z. H. Wu, and B. Li, "A high-linearity fully-differential mixer," Proceedings of the International Conference of Electron Devices and Solid-State Circuits (EDSSC), 1-2, 2011.

12. Zeng, H. Y., G. M. Wang, D. Z. Wei, and Y. W. Wang, "Planar diplexer using composite right-/left-handed transmission line under balanced condition," Electron Lett., Vol. 48, 104-106, 2012.
doi:10.1049/el.2011.2763

13. Wadefalk, N., P. S. Kildal, and H. Zirath, "A low noise integrated 0.3-16 GHz differential amplifier for balanced ultra wideband antennas," Proceedings of the IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), 1-4, 2010.

14. Arbelaez, N. A., C. J. L. Olvera, P. J. A. Escobar, and C. A. Corona, "A novel via-free microstrip balanced-to-balanced diplexer for narrow-band applications," Microwave and Optical Technology Letters, Vol. 57, No. 3, 567-70, Mar. 1, 2015.

15. Arbelaez-Nieto, A., A. Corona-Chavez, J. L. Olvera-Cervantes, and C. E. Saavedra, "Active CMOS differential filter with +3.5 dBm IP 1 dB and +12.3 dBm IIP 3," Microwave Conference (LAMC), IEEE MTT-S Latin America, 1-3, IEEE, Dec. 12, 2016.

16. Li, L. and G. Liu, "A differential microstrip antenna with filtering response," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 2016.

17. Hu, H.-T., F.-C. Chen, J.-F. Qian, and Q.-X. Chu, "A differential filtering microstrip antenna array with intrinsic common-mode rejection," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 12, Dec. 2017.
doi:10.1109/TAP.2017.2764097

18. Chen, X., B. Li, M. Zhang, and X.-Q. Sheng, "A novel deferentially fed microstrip integrated-antenna-filter," IEEE International Conference on Microwave Technology and Computational Electromagnetics, 134-136, 2013.

19. Matthaei, G. L., L. Young, and E. M. Jones, "Design of microwave filters, impedance-matching networks, and coupling structures,", Vol. 2, Stanford Research Inst Menlo Park CA, 1963.

20. Hong, J. S. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, John Wiley & Sons, Apr. 7, 2004.

21. Alonso, C.-C., J. L. Olvera-Cervantes, and C. E. Saavedra, "Balanced filter with parallel resonances for very wide band common mode rejection," Journal of Electromagnetic Waves and Applications, Vol. 29, No. 8, 1060-1067, 2015.
doi:10.1080/09205071.2015.1033064

22. Sonnet EM Full-Wave Simulator, v. 11.54, , Sonnet Software Inc., NY, USA.

23. Arbelaez-Nieto, A., E. Cruz-Perez, J. L. Olvera-Cervantes, A. Corona-Chavez, and H. Lobato-Morales, "The perfect balance-a design procedure for balanced bandpass filters [application notes]," IEEE Microwave Magazine, Vol. 16, No. 10, 54-65, USA, Nov. 2015.
doi:10.1109/MMM.2015.2465712

24. Keysight Fieldfox N9917A.