Vol. 79
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-09-30
Modified CMRC LPF Using Novel Fractal Patches
By
Progress In Electromagnetics Research Letters, Vol. 79, 25-31, 2018
Abstract
A modified compact microstrip resonance cell (CMRC) low pass filter (LPF) with ultrawide and deep stopband using novel fractal patches is presented. The proposed filter has low insertion loss in the passband, good selectivity, ultrawide and deep stopband. The experimental results show a 3-dB cut-off frequency of 2.85 GHz and out-of-band rejection up to 67 GHz with 181.5% relative stopband bandwidth.
Citation
Mohammed Ezzat Yassin, Hesham Abd Elhady Mohamed, Esmat A. F. Abdallah, and Hadia El-Hennawy, "Modified CMRC LPF Using Novel Fractal Patches," Progress In Electromagnetics Research Letters, Vol. 79, 25-31, 2018.
doi:10.2528/PIERL18071605
References

1. Khan, R., A. Abdullah Al-Hadi, and P. J. Soh, "Efficiency of millimeter wave mobile terminal antennas with the influence of users," Progress In Electromagnetics Research, Vol. 161, 113-123, 2018.
doi:10.2528/PIER18012409

2. Lischer, S., M. Heiss, M. Landwehr, and W.-Joachim Fischer, "A 24 GHz RFID system-on-a-chip with on-chip antenna, compatible to ISO 18000-6C/EPC CIG2," IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems (COMCAS), 1-4, Tel Aviv, Israel, Nov. 2-4, 2015.

3. Attaran, A., R. Rashidzadeh, and R. Muscedere, "Rotman lens combined with wide bandwidth antenna array for 60 GHz RFID applications," International Journal of Microwave and Wireless Technologies, 1-7, Jul. 2015.

4. Xie, Y., J. Chen, D. Liu, C. Lv, K. Liu, and J. Miao, "Development and calibration of a K-band ground-based hyperspectral microwave radiometer for water vapor measurements," Progress In Electromagnetics Research, Vol. 140, 415-438, 2013.
doi:10.2528/PIER13050704

5. Kurniawan, F., J. T. Sri Sumantyo, K. Ito, H. Kuze, and S. Gao, "Patch antenna using rectangular centre slot and circular ground slot for circularly polarized synthetic aperture radar (CP-SAR) application," Progress In Electromagnetics Research, Vol. 160, 51-61, 2017.
doi:10.2528/PIER17082903

6. Liu, Y., J. Xu, Y.-Y. Wei, X. Xu, F. Shen, M. Huang, T. Tang, W.-X. Wang, Y.-B. Gong, and J. Feng, "Design of a V-band high-power sheet-beam coupled-cavity traveling-wave tube," Progress In Electromagnetics Research, Vol. 123, 31-45, 2012.
doi:10.2528/PIER11092906

7. Wang, D. and C. Hou Chan, "Multiband antenna for WiFi and WiGig communications," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 309-312, 2015.
doi:10.1109/LAWP.2015.2443013

8. Kim, W.-G., N.-W. Moon, J. Kang, and Y.-H. Kim, "Loss measuring of large aperture quasi-optics for W-band imaging radiometer system," Progress In Electromagnetics Research, Vol. 125, 295-309, 2012.
doi:10.2528/PIER12010502

9. Mener, S., R. Gillard, and L. Roy, "A dual-band dual-circular-polarization antenna for Ka-band satellite communications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 274-277, 2016.
doi:10.1109/LAWP.2016.2572261

10. Trinh-Van, S., H. B. Kim, G. Kwon, and K. C. Hwang, "Circularly polarized spidron fractal slot antenna arrays for broadband satellite communications in Ku-band," Progress In Electromagnetics Research, Vol. 137, 203-218, 2013.
doi:10.2528/PIER13010401

11. De Sanctis, M., E. Cianca, T. Rossi, et al. "Waveform design solutions for EHF broadband satellite communications," IEEE Communications Magazine, Vol. 53, No. 3, 18-23, 2015.
doi:10.1109/MCOM.2015.7060477

12. Attaran, A., R. Rashidzadeh, and A. Kouki, "60 GHz low phase error Rotman lens combined with wideband microstrip antenna array using LTCC technology," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 12, 5172-5180, Dec. 2016.
doi:10.1109/TAP.2016.2618479

13. Attaran, A. and S. Chowdhury, "Fabrication of a 77 GHz Rotman lens on a high resistivity silicon wafer using lift-off process," International Journal of Antennas and Propagation, 1-9, article ID: 471935, 2014.

14. Xue, Q., K. M. Shum, and C. H. Chan, "Novel 1-D microstrip PBG Cells," IEEE Microwave and Guided Wave Letters, Vol. 10, 403-405, 2000.

15. Li, K., M. Zhao, Y. Fan, Z. B. Zhu, and W.-Z. Cui, "Compact lowpass filter with wide stopband using novel double-folded SCMRC structure with parallel open-ended stub," Progress In Electromagnetics Research, Vol. 36, 77-86, 2013.
doi:10.2528/PIERL12100910

16. Raphika, P. M., P. Abdulla, and P. M. Jasmine, "Compact lowpass filter with a sharp roll-off using patch resonators," Microwave and Optical Technology Letters, Vol. 56, 2534-2536, 2014.
doi:10.1002/mop.28644

17. Li, Q., Y. Zhang, and Y. Fan, "Compact ultra-wide stopband low pass filter using multimode resonators," Electronics Letters, Vol. 51, 1084-1085, 2015.
doi:10.1049/el.2015.1054

18. Tang, W., X. B. Yang, and L. H. Zuo, "A compact lowpass filter with ultra-wide stopband using novel resonance cell," Microwave and Millimeter Wave Circuits and System Technology (MMWCST), 1-3, Chengdu, China, Apr. 19-20, 2012.

19. Li, Q., Y. Zhang, D. Li, and K. Xu, "Compact low-pass filters with deep and ultra-wide stopband using tri- and quad-mode resonators," IET Microwaves, Antennas & Propagation, Vol. 11, 743-748, 2017.
doi:10.1049/iet-map.2016.0466

20. Chang, Y., W. Feng, and W. Che, "Dual-band bandpass filters with high isolation using coupled lines," International Journal of Electronics, Vol. 103, 372-383, 2015.