Vol. 77
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-06-21
Design of Printed Monopole Antenna for Wireless Energy Meter and Smart Applications
By
Progress In Electromagnetics Research Letters, Vol. 77, 27-33, 2018
Abstract
European smart energy meter applications operate over a smart grid network. These applications operate over ISM frequency bands. The proposed dual-band printed monopole antenna provides a solution to smart energy meter applications. The surface dimension of the planar monopole antenna is 45 x 17 mm2. The antenna has strips fabricated on a standard cost-effective FR-4 substrate of thickness 1.6 mm for achieving dual-mode resonance at 868 MHz and 2.4 GHz. The proposed monopole antenna has operating impedance bandwidth of 2.89% and 2.78% for the first and second resonances, respectively. The gain of the presented antenna is in order of 1.18 dBi for lower resonant mode and 2.1 dBi for the higher resonant mode. The antenna resonates in the frequency range which is also useful in smart RFID tags for device identification operating over smart grid. In addition, the antenna can be utilized for the devices functional in Low Rate Wireless Personal Area Networks (LR-WPAN) and WiFi-based smart applications.
Citation
Trushit K. Upadhyaya, Arpan Desai, and Riki Patel, "Design of Printed Monopole Antenna for Wireless Energy Meter and Smart Applications," Progress In Electromagnetics Research Letters, Vol. 77, 27-33, 2018.
doi:10.2528/PIERL18042203
References

1. European Commission 2015 Study on Cost Benefit Analysis of Smart Metering Systems in EU Member States.

2. Chen, F., N. Wang, R. German, and F. Dressler, "Performance evaluation of IEEE 802.15. 4 LR-WPAN for industrial applications," Fifth Annual Conference on Wireless on Demand Network Systems and Services, 2008, WONS 2008, 89-96, IEEE, January 2008.
doi:10.1109/WONS.2008.4459361

3. Callaway, E., P. Gorday, L. Hester, J. A. Gutierrez, M. Naeve, B. Heile, and V. Bahl, "Home networking with IEEE 802.15. 4: A developing standard for low-rate wireless personal area networks," IEEE Communications Magazine, Vol. 40, No. 8, 70-77, 2002.
doi:10.1109/MCOM.2002.1024418

4. Lu, J. H. and Y. S. Wang, "Planar small-size eight-band LTE/WWAN monopole antenna for tablet computers," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 8, 4372-4377, 2014.
doi:10.1109/TAP.2014.2327659

5. Mahatthanajatuphat, C., S. Saleekaw, P. Akkaraekthalin, and M. Krairiksh, "A rhombic patch monopole antenna with modified Minkowski fractal geometry for UMTS, WLAN, and mobile WiMAX application," Progress In Electromagnetics Research, Vol. 89, 57-74, 2009.
doi:10.2528/PIER08111907

6. Ban, Y. L., S. C. Sun, J. W. Li, and W. Hu, "Compact coupled-fed wideband antenna for internal eight-band LTE/WWAN tablet computer applications," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 17-18, 2222-2233, 2012.
doi:10.1080/09205071.2012.730655

7. Wong, K. L. and L. C. Lee, "Multiband printed monopole slot antenna for WWAN operation in the laptop computer," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 2, 324-330, 2009.
doi:10.1109/TAP.2008.2011391

8. Sze, J. Y. and Y. F.Wu, "A compact planar hexa-band internal antenna for mobile phone," Progress In Electromagnetics Research, Vol. 107, 413-425, 2010.
doi:10.2528/PIER10020603

9. Wong, K. L. and C. Y. Tsai, "Half-loop frame antenna for the LTE metal-casing tablet device," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 1, 71-81, 2017.
doi:10.1109/TAP.2016.2630716

10. Chiu, C. W., C. H. Chang, and Y. J. Chi, "Multiband folded loop antenna for smart phones," Progress In Electromagnetics Research, Vol. 102, 213-226, 2010.
doi:10.2528/PIER10011601

11. Rosenberg, H., H. Jidhage, and B. Svensson, , Sony Mobile Communications AB, Wideband loop antenna, U.S. Patent 7,342,539, 2008.

12. Adachi, T., A. Hirata, and T. Shiozawa, "Folded loop antennas for handset terminals at the 2.0GHz band," Microwave and Optical Technology Letters, Vol. 36, No. 5, 376-378, 2003.
doi:10.1002/mop.10768

13. Naser-Moghadasi, M., Z. Mansouri, S. Sharma, F. B. Zarrabi, and B. S. Virdee, "Low SAR PIFA antenna for wideband applications," IETE Journal of Research, Vol. 62, No. 5, 564-570, 2016.
doi:10.1080/03772063.2015.1135300

14. Jeon, S. and H. Kim, "Mobile terminal antenna using a planar inverted e feed structure for enhanced impedance bandwidth," Microwave and Optical Technology Letters, Vol. 54, No. 9, 2133-2139, 2012.
doi:10.1002/mop.27035

15. Lu, J. H. and F. C. Tsai, "Planar small-size LTE/WWAN tablet computer antenna with eight-band operation," Journal of Electromagnetic Waves and Applications, Vol. 29, No. 8, 1032-1046, 2015.
doi:10.1080/09205071.2015.1029644

16. Wong, K. L. and M. T. Chen, "Very low profile dual wideband loop antenna for LTE tablet computer," Microwave and Optical Technology Letters, Vol. 57, No. 1, 141-146, 2015.
doi:10.1002/mop.28802

17. Anguera, J., A. And´ujar, M. C. Huynh, C. Orlenius, C. Picher, and C. Puente, "Advances in antenna technology for wireless handheld devices," Digital Communication World, Vol. 2013, No. 1921, 388-391, 2014.

18. Wong, K. L. and and Y. C. Liu, "Small size WWAN tablet computer antenna with distributed and lumped parallel resonant circuits," Microwave and Optical Technology Letters, Vol. 54, No. 6, 1348-1353, 2012.
doi:10.1002/mop.26811

19. Chen, S. C. and Y. C. Tsou, "Bandwidth enhancement of a monopole exciter by using a chipi-nductor-loaded shorted strip," Journal of Electromagnetic Waves and Applications, Vol. 30, No. 11, 1481-1492, 2016.
doi:10.1080/09205071.2016.1204251

20. Upadhyaya, T. K., V. V. Dwivedi, S. P. Kosta, and Y. P. Kosta, "Miniaturization of tri band patch antenna using metamaterials," 2012 Fourth International Conference on Computational Intelligence and Communication Networks (CICN), 45-48, IEEE, November 2012.