Vol. 74
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-04-10
Development of Large Aperture Microstrip Antenna for Radio Wave Energy Harvesting
By
Progress In Electromagnetics Research Letters, Vol. 74, 137-143, 2018
Abstract
Radio wave energy harvesting has become one of the most fascinating fields of research, especially in developing antenna for its front end subsystem. This paper presents the development of a single large aperture antenna for energy harvesting system. Three substrate layers FR4-air-FR4 are employed to increase the antenna gain. Measurement result shows that the proposed antenna is able to obtain gain of about 9.61 dBi at 1.575 GHz (GPS L1 frequency), with low return loss of about -17.12 dB. The achieved bandwidth is about 128 MHz. The antenna characteristic is suitable for energy harvesting application.
Citation
Intan Savitri, Radial Anwar, Yahya Syukri Amrullah, and Dwi Andi Nurmantris, "Development of Large Aperture Microstrip Antenna for Radio Wave Energy Harvesting," Progress In Electromagnetics Research Letters, Vol. 74, 137-143, 2018.
doi:10.2528/PIERL18030305
References

1. Ramesh, G. P. and A. Rajan, "Microstrip antenna designs for RF energy harvesting," 2014 International Conference on Communication and Signal Processing, 1653-1657, Melmaruvathur, 2014.

2. Mrnka, M., P. Vasina, M. Kufa, V. Hebelka, and Z. Raida, "The RF energy harvesting antennas operating in commercially deployed frequency bands: A comparative study," International Journal of Antennas and Propagation, Vol. 2016, Article ID 7379624, 2016.

3. Shrestha, S., S.-K. Noh, and D.-Y. Choi, "Comparative study of antenna designs for RF energy harvesting," International Journal of Antennas and Propagation, Vol. 2013, Article ID 385260, 2016.

4. Din, N. Md., C. K. Chakrabarty, A. Bin Ismail, K. K. A. Devi, and W.-Y. Chen, "Design of RF energy harvesting system for energizing low power devices," Progress In Electromagnetics Research, Vol. 132, 49-69, 2012.
doi:10.2528/PIER12072002

5. Sim, Z.W., R. Shuttleworth, M. J. Alexander, and B. D. Grieve, "Compact patch antenna design for outdoor RF energy harvesting in wireless sensor networks," Progress In Electromagnetics Research, Vol. 105, 273-294, 2010.
doi:10.2528/PIER10052509

6. Moon, J.-I. and Y.-B. Jung, "Novel energy harvesting antenna design using a parasitic radiator," Progress In Electromagnetics Research, Vol. 142, 545-557, 2013.
doi:10.2528/PIER13081802

7. Shrestha, S., S. R. Lee, and D.-Y. Choi, "A new fractal-based miniaturized dual band patch antenna for RF energy harvesting," International Journal of Antennas and Propagation, Vol. 2014, Article ID 805052, 2014.

8. Bakkali, A., J. Pelegri-Sebastia, T. Sogorb, V. Llario, and A. Bou-Escriva, "A dual-band antenna for RF energy harvesting systems in wireless sensor networks," Journal of Sensors, Vol. 2016, Article ID 5725836, 2016.

9. Hoang, M. H., H. P. Phan, T. Q. V. Hoang, and T.-P. Vuong, "Efficient compact dual-band antennas for GSM and Wi-Fi energy harvesting," Proceedings of the 7th International Conference on Advanced Technologies for Communications (ATC’14), 401-404, Hanoi, Vietnam, October 2014.

10. Kim, P., G. Chaudhary, and Y. Jeong, "A dual-band RF energy harvesting using frequency limited dual-band impedance matching," Progress In Electromagnetics Research, Vol. 141, 443-461, 2013.
doi:10.2528/PIER13061704

11. Leclerc, C., M. Egels, and E. Bergeret, "Design and measurement of multi-frequency antennas for RF energy harvesting tags," Progress In Electromagnetics Research, Vol. 156, 47-53, 2016.
doi:10.2528/PIER15121803

12. Mavaddat, A., S. H. M. Armaki, and A. R. Erfanian, "Millimeter-wave energy harvesting using 4 × 4 microstrip patch antenna array," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 515-518, 2015.
doi:10.1109/LAWP.2014.2370103

13. Antar, Y. M. M., A. Zavvari, M. T. Islam, R. Anwar, A. M. Hasbi, M. F. Asillam, and C. Monstein, "Callisto radio spectrometer construction at Universiti Kebangsaan Malaysia [antennas and propagation around the world]," IEEE Antennas and Propagation Magazine, Vol. 56, No. 2, 278-288, April 2014.
doi:10.1109/MAP.2014.6837099

14. Sabri, S. N. U., N. H. Zainol, M. O. Ali, N. N. M. Shariff, N. H. Hussien, M. S. Faid, Z. S. Hamidi, and C. Monstein, "The dependence of log periodic dipole antenna (LPDA) and e-CALLISTO software to determine the type of solar radio burst (I -V)," 2016 International Conference on Industrial Engineering, Management Science and Application (ICIMSA), 1-5, Jeju, 2016.

15. Ozenc, K., M. E. Aydemir, and A. Oncu, "Design of a 1.26 GHz high gain microstrip patch antenna using double layer with airgap for satellite reconnaissance," 2013 6th International Conference on Recent Advances in Space Technologies (RAST), 499-504, Istanbul, 2013.

16. Bhatoa, R., Roopan, and E. Sidhu, "Novel high gain air gap directive antenna for X-band satellite to earth downlink applications," 2016 International Conference on Control, Computing, Communication and Materials (ICCCCM), 1-4, Allahbad, 2016.

17. Hussine, U. U., M. T. Islam, and N. Misran, "A new I slotted compact microstrip antenna for L1 & L2 bands," Proceeding of the 2011 IEEE International Conference on Space Science and Communication (IconSpace), 286-290, Penang, 2011.
doi:10.1109/IConSpace.2011.6015902

18. Rezazadeh, N. and L. Shafai, "A compact microstrip patch antenna for civilian GPS interference mitigation," IEEE Antennas and Wireless Propagation Letters, Vol. PP, No. 99, 1-1, 2018.

19. Mondal, T., S. Samanta, R. Ghatak, and S. R. Bhadra Chaudhuri, "A novel tri-band hexagonal microstrip patch antenna using modified sierpinski fractal for vehicular communication," Progress In Electromagnetics Research C, Vol. 57, 25-34, 2015.
doi:10.2528/PIERC15021105

20. Lee, B.-Y., W.-S. Chen, Y.-C. Su, and F.-S. Chang, "A corner-fed square ring antenna with an L-shaped slot onground plane for GPS application," Progress In Electromagnetics Research C, Vol. 41, 111-120, 2013.