Vol. 74
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-03-24
Design of Miniaturized Rat-Race Couplers with Arbitrary Power Division Ratios
By
Progress In Electromagnetics Research Letters, Vol. 74, 83-89, 2018
Abstract
A miniaturized rat-race coupler with arbitrary power division ratio is proposed in this paper. The design formulas of the rat-race coupler with arbitrary power division ratio are derived using the even-odd decomposition analysis. The proposed structure demonstrates miniaturized size and perfect isolation due to adding phase inverter to the branch. For demonstration, a 20 dB rat-race coupler operating at 1 GHz with 81.34% size reduction is designed and fabricated. There is good agreement between measured and simulated results.
Citation
Xiao Yang, Zhenheng Liao, and Xu-Chun Zhang, "Design of Miniaturized Rat-Race Couplers with Arbitrary Power Division Ratios," Progress In Electromagnetics Research Letters, Vol. 74, 83-89, 2018.
doi:10.2528/PIERL17110805
References

1. Park, M. J. and B. Lee, "Design of ring couplers for arbitrary power division with 50Ω lines," IEEE Microw. Wireless Compon. Lett., Vol. 21, 185-187, 2011.
doi:10.1109/LMWC.2011.2112341

2. Chi, P. L., "Miniaturized ring coupler with arbitrary power divisions based on the composite right/left-handed transmission lines," IEEE Microw. Wireless Compon. Lett., Vol. 22, 170-172, 2012.
doi:10.1109/LMWC.2012.2189376

3. Ho, K. L. and P.-L. Chi, "Miniaturized and large-division-ratio ring coupler using novel transmission-line elements," IEEE Microw. Wireless Compon. Lett., Vol. 24, 35-37, 2014.
doi:10.1109/LMWC.2013.2288261

4. Xu, H.-X., G.-M. Wang, X. Chen, and T.-P. Li, "Broadband balun using fully artificial fractalshaped composite right/left handed transmission line," IEEE Microwave and Components Letters, Vol. 22, No. 1, 16-18, Jan. 2012.
doi:10.1109/LMWC.2011.2173929

5. Hsu, C. L., J. T. Kuo, and C. W. Chang, "Miniaturized dual-band hybrid couplers with arbitrary power division ratios," IEEE Trans. Microw. Theory Tech., Vol. 57, 149-156, 2009.
doi:10.1109/TMTT.2008.2009036

6. Pon, C. Y., "Hybrid-ring directional coupler for arbitrary power divisions," IEEE Trans. Microw. Theory Tech., Vol. 9, 529-535, 1961.
doi:10.1109/TMTT.1961.1125385

7. Zhang, X. C., T. Y. Wang, and Y. B. Xiang, "Wideband three-way out-of-phase microstrip power divider," Electronics Letters, Vol. 51, 404-405, 2015.
doi:10.1049/el.2014.3915

8. Zhang, X. C., C. H. Liang, and J. W. Xie, "Microstrip phase inverter using interdigital strip lines and defected ground," Progress In Electromagnetics Research Letters, Vol. 29, 167-173, 2012.
doi:10.2528/PIERL11121403

9. Liao, Z. H., X. C. Zhang, and T. Y. Wang, "A novel dual-frequency phase inverter," IEEE International Conference on Ubiquitous Wireless Broadband, 1-2, 2016.

10. Liao, Z. H. and X. C. Zhang, "Reconfigurable phase inverter with switchable frequency," Electronics Letters, Vol. 53, 353-354, 2017.
doi:10.1049/el.2016.2587