Vol. 71
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2017-10-20
Synthesis of a Broadband Rat-Race Hybrid Using Transmission Lines and Lumped-Element Components
By
Progress In Electromagnetics Research Letters, Vol. 71, 53-60, 2017
Abstract
This letter presents the synthesis of a broadband rat-race consisting of a miniaturized broadband rat-race hybrid and transmission line cascades. This broadband technique involves connecting a cascade of transmission lines with lengths equal to a quarter of the wavelength at the design frequency to each port of a previously proposed rat-race hybrid. Butterworth and Chebyshev performances of the broadband rat-race hybrid are also reported. The broadband rat-race hybrid was implemented on an FR4 substrate using spiral inductors and chip capacitors. For the frequency range of 420-800 MHz, which corresponds to a relative bandwidth of more than 62%, the broadband rat-race hybrid exhibited power splits of -3.8 ± 1.0 dB, return losses of greater than 19 dB, and isolation between output ports of greater than 20 dB. The phase difference between S21 and S41 was 180° ± 3°.
Citation
Ryo Ueda, and Hitoshi Hayashi, "Synthesis of a Broadband Rat-Race Hybrid Using Transmission Lines and Lumped-Element Components," Progress In Electromagnetics Research Letters, Vol. 71, 53-60, 2017.
doi:10.2528/PIERL17082003
References

1. Ahn, H. R. and S. Nam, "Compact microstrip 3-dB coupled-line ring and branch-line hybrids with new symmetric equivalent circuits," IEEE Trans. Microw. Theory Techn., Vol. 61, No. 3, 1067-1078, Mar. 2013.
doi:10.1109/TMTT.2013.2241783

2. Ahn, H. R. and S. Nam, "Wideband microstrip coupled-line ring hybrids for high power-division ratios," IEEE Trans. Microw. Theory Techn., Vol. 61, No. 5, 1768-1780, May 2013.
doi:10.1109/TMTT.2013.2251654

3. Hirota, T., A. Minakawa, and M. Muraguchi, "Reduced-size branch-line and rat-race hybrids for uniplanar MMIC’s," IEEE Trans. Microw. Theory Techn., Vol. 38, No. 3, 270-275, Mar. 1990.
doi:10.1109/22.45344

4. Piernas, B., H. Hayashi, K. Nishikawa, K. Kamogawa, and T. Nakagawa, "A broadband and miniaturized V-band PHEMT frequency doubler," IEEE Microw. Wireless Compon. Lett., Vol. 10, No. 7, 276-278, Jul. 2000.

5. Arigong, B., J. Shao, M. Zhou, J. Ding, H. Ren, H. Kim, and H. Zhang, "Design of a 180º directional coupler with arbitrary branch lengths," Proc. 2014 Texas Symposium on Wireless and Microwave Circuits and Systems (WMCS), 1-4, Waco, TX, Apr. 2014.

6. Ahn, H. R. and B. Kim, "Small wideband coupled-line ring hybrids with no restriction on coupling power," IEEE Trans. Microw. Theory Techn., Vol. 57, No. 7, 1806-1817, Jul. 2009.

7. Hayashi, H., T. Nakagawa, and K. Araki, "180º hybrid circuit," Japanese Patent Application Publication No. 2001-168609, 1999.

8. Ueda, R., H. Hayashi, and S. Kuwana, "Miniaturized broadband rat-race hybrid for UHF biomedical and healthcare applications and TV white space systems," Proc. 2015 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO), 201-202, Sep. 21-23, 2015.

9. Rehnmark, S., "Wide-band balanced line microwave hybrids," IEEE Trans. Microw. Theory Techn., Vol. 25, No. 10, 825-830, Oct. 1977.
doi:10.1109/TMTT.1977.1129221

10. Hayashi, H., "Tandem lange 3-dB 90º hybrid implemented on FR4 substrate," Proc. 2014 NORCHIP, 1-3, Tampere, Finland, Oct. 2014.

11. Sumitomo, Y., T. Kawai, A. Enokihara, I. Ohta, K. Satoh, Y. Suzuki, H. Okazaki, and S. Narahashi, "Compact wideband rat-race hybrid utilizing composite right/left-handed transmission lines," Proc. 2013 IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems (BioWireleSS), 130-132, Austin, TX, Jan. 20-23, 2013.

12. Gruszczynski, S. and K. Wincza, "Broadband rat-race couplers with coupled-line section and impedance transformers," IEEE Microw. Wireless Compon. Lett., Vol. 22, No. 1, 22-24, Jan. 2012.
doi:10.1109/LMWC.2011.2177649