Vol. 67
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2017-04-21
Novel Smart Noise Jamming Suppression Method Based on Smeared Spectrum
By
Progress In Electromagnetics Research Letters, Vol. 67, 81-88, 2017
Abstract
This study proposes an anti-jamming scheme for linear frequency modulated (LFM) radars to combat smart noise jamming, which is a newly proposed pattern that is very effective against LFM radars. First, by utilizing the smeared spectrum technique, the chirp rates of the target return and jamming signal can be changed. The target return and jamming signal then exhibit different characteristics after the application of matched filters. Finally, the true target can be distinguished from the smart noise jamming, which is suppressed by the reconstruction and subtraction in the receiving signal. Numerical experiments demonstrate the feasibility and practicability of the proposed anti-jamming device, which is also verified as having a superior performance over existing jamming suppression schemes.
Citation
Jiaqi Ren, and Pan Wang, "Novel Smart Noise Jamming Suppression Method Based on Smeared Spectrum," Progress In Electromagnetics Research Letters, Vol. 67, 81-88, 2017.
doi:10.2528/PIERL17022204
References

1. Schleher, D. C., Electronic Warfare in the Information Age, Artech House Publishers, London, 1999.

2. Shen, H., X. Wang, and J. Rong, "Smart noise jamming waveforms based on DRFM," Aerospace Electronic Warfare, Vol. 23, No. 1, 62-64, 2007.

3. Hao, H., D. Zeng, and P. Ge, "Research on the method of smart noise jamming on pulse radar," Proc. of 5th International Conference on Instrumentation and Measurement, Computer, Communication and Control, 1339-1342, Qinhuangdao, Hebei, 2015.

4. Xu, X., Y. Bao, and H. Zhou, "Technology of smart noise jamming based on convolution modulation," Modern Radar, Vol. 29, No. 5, 28-31, 2007.

5. Yang, Y., W. Zhang, and J. Yang, "Study on frequency-shifting jamming to linear frequency modulation pulse compression radars," Proc. of 2009 International Conference on Wireless Communications and Signal Processing, 1-5, Nanjing, Jiangsu, 2009.

6. Qiu, J., "A study on relationship between smart noise jamming and SLB," Modern Radar, Vol. 34, No. 8, 55-59, 2012.

7. Feng, M., M. He, C. Yu, et al. "Effects of adaptive sidelobe canceling against smart noise jamming," Modern Defence Technology, Vol. 42, No. 3, 25-30, 2014.

8. Lu, G., S. Liao, S. Luo, and B. Tang, "Cancellation of complicated DRFM range false targets via temporal pulse diversity," Progress in Electromagnetics Research C, Vol. 16, No. 6, 69-84, 2010.
doi:10.2528/PIERC10061401

9. Luo, S. and B. Tang, "An algorithm of deception jamming suppression based on blind signal separation," J. Electron. Inf. Technol., Vol. 33, No. 12, 2801-2806, 2011.

10. Sparrow, M. J. and J. Cikalo, "ECM techniques to counter pulse compression radar," United States Patent, 7081846, 2006.

11. Sun, M. and B. Tang, "Suppression of smeared spectrum ECM signal," J. Chin. Inst. Eng., Vol. 32, No. 3, 407-413, 2009.
doi:10.1080/02533839.2009.9671521

12. Wang, N., J. Ren, J. Meng, et al. "A signal cancellation method based on multiple parameters estimation," Proc. of 2014 International Conference on Signal Processing, 2068-2072, Hangzhou, Zhejiang, 2014.

13. Ren, J., X. Dai, N. Wang, et al. "Repeater jamming suppression technology based on HHT," Proc. of 2016 IEEE Radar Conference, 1-5, Philadelphia, Pennsylvania, 2016.