Vol. 67
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2017-05-02
Compact Extremely Wideband Antenna with Photonic Crystal Structure Based on MEMS Manufacturing Technology
By
Progress In Electromagnetics Research Letters, Vol. 67, 103-109, 2017
Abstract
An extremely wideband photonic crystal antenna is proposed with a very compact size of 16.6 x 26.6 x 0.9mm3. The double-layer materials of silicon and glass are selected as the antenna substrate. The band gap performance of photonic crystals can decrease electromagnetic wave absorption of silicon substrate, restrain surface wave loss of antenna, and increase electromagnetic wave space radiation. Hence the periodical photonic crystal with square lattices is applied in upper silicon substrate. The glass substrate not only decreases effective dielectric constant of antenna, but also supports silicon substrate with photonic crystal. MEMS processes are used to realize photonic crystal antenna with plenty tiny through-holes. The simulated and measured results demonstrate that photonic crystal can effectively expand the working bandwidth of base antenna.
Citation
Xiaoming Zhu, Xiao-Dong Yang, and Xiaoguang Wang, "Compact Extremely Wideband Antenna with Photonic Crystal Structure Based on MEMS Manufacturing Technology," Progress In Electromagnetics Research Letters, Vol. 67, 103-109, 2017.
doi:10.2528/PIERL17011906
References

1. Federal Communications Commission (FCC) "First report and order in the matter of revision of Part 15 of the com-mission's rules regarding ultra-wideband transmission systems,", ET-Docket, 98-153, 2002.

2. Joannopoulos, J. D., R. D. Meade, and J. N. Winn, Photonic Crystal: Molding the Flow of Light, 3-5, Princeton University Press, Princeton, 1995.
doi:10.1002/mop.29479

3. Pereira Jonathan, P. P., P. Da Silva Jose, and G. O. De Adller, "Microstrip antennas design based in periodic and quasiperiodic PBG symmetries," Microwave and Optical Technology Letters, Vol. 57, No. 12, 2914-2917, 2015.
doi:10.1109/LMWC.2005.855373

4. Leger, L., T. Monediere, and B. Jecko, "Enhancement of gain and radiation bandwidth for a planar 1-D EBG antenna," IEEE Microwave Wireless Communication Letter, Vol. 15, No. 9, 573-575, 2005.

5. Zeb, B. A., K. P. Esselle, and R. M. Hashmi, "Computational models for bandwidth enhancement of electromagnetic bandgap (EBG) resonator antennas and their limitations," IEEE International Conference on Computational Electromagnetics, 19-21, 2015.
doi:10.1109/APWC.2012.6324933

6. Neumann, N., R. Trieb, W.-S. Benedix, and D. Plettemeier, "Active integrated photonic antenna array," Proceedings of the 2012 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications, 648-651, 2012.

7. Panda, P. K. and D. Ghosh, "Mushroom-like EBG structures for reducing RCS of patch antenna arrays," International Conference on Microwave and Photonics, 2013.
doi:10.1109/TAP.2002.800699

8. Cheype, C., C. Serier, and M. Thevenot, "An electromagnetic bandgap resonator antenn," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 9, 1285-1290, 2002.
doi:10.1109/TAP.2004.840531

9. Weily, A. R., L. Horvath, and K. P. Esselle, "A planar resonator antenna based on a woodpile EBG material," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 1, 216-223, 2005.
doi:10.1109/TAP.2014.2333052

10. Liu, W., Z. N. Chen, and X. Qing, "60-GHz thin broadband high-gain LTCC metamaterial- mushroom antenna array," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 9, 4592-4601, 2014.
doi:10.1109/JSTQE.2005.845621

11. Seassal, C., C. Monat, J. Mouette, et al. "InP bonded membrane photonics components and circuits: Toward 2.5 dimensional micro-nano-photonics," IEEE Journal of Selected Topics in Quantum Electronic, Vol. 11, No. 2, 395-407, 2005.
doi:10.1364/OPEX.13.003310

12. Hattori, H. T., C. Seassal, X. Letartre, et al. "Coupling analysis of heterogeneous integrated InP based photonic crystal triangular lattice band-edge lasers and silicon waveguides," Optics Express, Vol. 13, No. 9, 3310-3322, 2005.
doi:10.1109/TMTT.2011.2176507

13. Oliver, J. M., J.-M. Rollin, K. Vanhille, et al. "A W-band micromachined 3-D cavity-backed patch antenna array with integrated diode detector," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 2, 284-292, 2012.

14. Prather, D. W., S. Shi, A. Sharkawy, J. Murakowski, and G. J. Schneider, Photonic Crystals: Theory, Applications, and Fabrication, 562-590, Wiley, Hoboken, N.J., 2009.
doi:10.1007/978-88-470-0844-1

15. Sibilia, C., Photonic Crystals: Physics and Technology, 223-243, Springer, Milano, 2008.